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PREFACE

This final report summarizes the results of The Wayside Energy Storage
Study, It is submitfed to the Transportation Systems Center by the AiResearch
Manufacturing Company of California, a division of The Garrett Corporation, in
accordance with U. S. Department of Transportation Confract No. DOT-TSC-1349.
The final report comprises four volumes as follows:

Volume No. Title

I Summary

1 Detailed Description of Analysis

Pl Engineering Economics Analysis Data
and Results

v Dual-Mode Locomotive Design Study

The Wayside Energy Storage Study represents the joint efforts of the
AiResearch Manufacturing Company of California and Bechtel Incorporated; the
Bechtel staff assisted in the railroad location survey, the electrification
studies, and fthe wayside station design,

The continued assistance and guidance of the Transportation Systems Center
(TSC) Technical Monitor, Mr. John M, Clarke; the Federal Railroad Administration
(FRA) Functional Coordinator, Energy/Environment, Mr. John Koper; and several
members of the TSC and FRA staffs were invaluable to the success of the study.

The interest and support for the Wayside Energy Storage Study given by
Mr. Peter L. Eggleton, Director General, Transpor+t Canada Research and Develop-
ment Centfre, and his staff have been helpful and have shown that the concept
is also applicable outside fthe United States. Inferest in fthe wayside energy
storage concept has also been expressed by Mr, W, Latscha, General Manager,
Swiss Federal Railways.

Major contfributions were made by many U.S, railroads, who contributed
comprehensive information that was used fo establish and maintain the necessary
data base. These railroads also acted as sounding boards in the review of fly-
wheel energy recuperation concepts developed in the study. Their comments and
suggestions have been incorporated into the final recommendations of the program,
with the result that the concept favored for subsequent development, demonstra-
tion, and depioyment is represenfative of equipment fthat railroads would consider
for fufure procurement., The following railroads have given substantial assist-
ance to AiResearch in the study:

Atchison, Topeka, and Santa Fe
Black Mesa and Lake Powel |
Burlington Northern

Conrail
iii
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Denver and Rio Grande Western
Duluth, Missabe, and |ron Range
Southern

Southern Pacific

Union Pacific.

Many material and equipment suppliers were helpful in defining locomotive
modifications, wayside electrification, and the flywheel stations. The suppliers
contributing to the study were the following:

Edison Institute

English Electric Corporation

General Electric Industrial Sales Division
General Electric LocomoTive Department
General Motors Electro-Motive Division
Lukens Steel Company

Morrison and Knudsen

Reliance Electric

Southern California Edison

Westinghouse Electric Industry Products,
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SECTION 1

INTRODUCT ION

The initial intent of this Wayside knergy Storage Study was to establish
the feasibility and to quantify the benefits of recuperating braking energy
from freight operations. (Such energy--the annual equivalent of many million
barrels of oil--is presently wasted in the daily cperation of freight frains
on long downgrades or during stopping); however, it was recognized at the
outset that the study should concentrate on determining the best sites for
deployment of wayside energy sforage systems (WESS's). Therefore, criteria
were established regarding grade characteristics such as elevation change,
traffic density, ftrack configuration, and length of grade. These criferia
allowed a quick screening of data gathered on grades throughout the United
States. The WESS study began with a series of visifts to operating railroads
and the Federal Railroad Adminisfration (FRA) to obtain the needed data on
actual grades.

PROGRAM OUTL INE

The WESS study was conducted by AiResearch and the program subcontractor,
Bechtel, Inc.; it consisted of performing the 11 work items specified in the
Statement of Work in the contract. The specific work items completed during
this program are ummarized below:

Itfem 1, Locations--Survey the route system of U.5. railroads to
identify and classify potential locations for application of wayside
flywheel energy storage. The contractor shall acquire all pertinent
data that is currently available, including parameters of grade,
iength of grade, traffic density, frain speeds, frain consists, and
fuel consumption data. |In accumulating the aforementioned data,

the contfractor, and/or its subcontractor, shall not conduct any
survey involving more than nine (9) railroads, or other elements

of tThe general public by questionnaire, telephone call, personal
visit, or other means.

[tem 2, Systems--Derive concepts of complete systems for the applica-
tTions identified by the survey (including equipment in the locomo-
Tives and at flywheel stations) for both electrified and diesel-elec-
tric railroads. System concepts for flywheel stations may also include
other energy storage concepts operating in conjunction with the fly=-
wheel. Realistic operational scenarios shall be defined by the con-
tractor. The benefits to be derived from each of the concepts, based
upon the adopted scenario, shall be identified in fterms of technical
risks and/or deficiencies, and potential benefits. The study shatll
determine where a need exists for a wayside-to-train communications
link tfo alert the ascending train of the available energy, or to inform
the wayside station of frain weight, length, and other pertinent data.
This system study shall determine the most cost-effective design con-
cepts along with The operational procedure to be used. The contfractor
shall establish limits on paramefers such as frain length and grade

for a particular system configuration.

1-1



Item 3, Calculations~~Perform calculations of power and energy
requirements for proposed systems at candidate locations, and compare
with fuel consumption data for existing operations. An existing frain
performance simuiation, modified as required fo mode! wayside storage,
may be used to evaluate the performance of each system concept con-
sidered. This compufer simulation model shall be capable of taking
info account various operating parameters including, but not |imited
to, the following:

(a) Varying the rated horsepower of locomotive
(b) Varying the size of the train

(¢) Varying the train schedule

(d) Topographic conditions

The simulation model may have value beyond the scope of this study.
!T may be employed by a railroad for a particular application to
determine the proper system configuration and to measure potential
benefits.,

Item 4, Locomotives—-Determine modifications required for diesel-
electric locomotives to deliver and receive energy from the propulsion
system. Consider both the direct fransfer at propulsion system dc
voltage level, and the onboard conversion to a different voltage

level To match the ratings of the wayside collector system.

Item 5, Wayside--Derive concepts of wayside, third-rail, and/or catenary
equipment to deliver and receive energy from the locomotives. Systems
To be considered are to include those using the running rails as one
electrical side, as well as bipolar systems consisting of two catenary
wires or two opposite-side third rails. Consider the impact on

existing signaling systems using the rails as one electrical side.

|tem 6, Stations--Derive concepts for the flywheel stations, including
alternative fypes of mofor/generator flywheel sets, flywheel designs,
number of sefs for reliable service, use of standard machinery, vacuum
systems, and duty cycle. Other energy storage concepts involving the
flywheel also shall be considered, including batteries. The study also
should consider automatic alterations To the flywheel system configura-
tion based on approaching train data, including parameters such as
weight and length.

Item 7, Controls--Determine methods for regulating the flow and stor-
age of enerqgy for various frain configurations such as: one track
with one frain on the descending grade, no frain ascending; ditfo with
ascending frain; two tracks with all combinations of ascending and
descending trains.




Item 8, Energy Supplement--Analyze use of utility energy to precharge
the flywheels, or to supplement the flywheel energy for ascending
frains. Return of energy to the utilify will be taken into con-
sideration, as will the use of flywheel sets integrated with

gas turbines or other auxiliary power sources for peak-shaving at
wayside substations.

Item 9, Electrified Railroads—-In the design concepts of flywheel
systems, consider the problem of coupling single-phase buses to
substation buses. Consideration should be given to The use of
fiywheel sets at electrical points common to several substations,
and also to the use of flywheel sets integrated with gas turbines
or other auxiliary power sources for peak-shaving at wayside sub-
stations.

item 10, Engineering Economics—-Provide an engineering economy study
to determine the economic viability that results from installation
of a track-side flywheel energy storage system at the crucial points
identified by this study. All major cost and savings increments
should be considered, including those related to energy, fleet size,
tocomotive maintenance, and capital investment in wayside equipment
and locomotive modifications. Credit should be included for equip—
ment that would be retired, presuming it can be redeployed else-
where in the system. Traffic density should be based upon actual
schedules, and fraffic growth should be based upon Department of
Commerce projections. The analysis should be conducted for both
diesel-electric and all-electric operation. Cost parameters to
which the analysis is highly sensitive should be identified and
their effect should be demonstrated by a sensitivity study.

Item 11, Development Program--Based on The resultfs of the study
covered by the preceding tasks, preliminary estimates shall be pro-
vided for a suitable follow-on program. This program shall contain
recommendations concerning selected concepts, equipment require-
ments, test/demonstration programs, suitable test locations, and
R&D requirements.

Reference to the above~listed items of the study will be made throughout
the final report to show the specific efforts which have been directed toward
each particular work item.

PROGRAM METHODOLOGY

A logic diagram of the methodology followed by AiResearch and Bechtel in
performing the study program is shown in Figure 1-1. The initial data-gathering
tasks described above, as shown at the extreme left side of Figure 1-1, were
accomplished by a series of visits with the engineering and operating personnel
of the following raijroads:

Black Mesa and lLake Powell

Conrai
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puluth, Missabe, and lron Range
Southern

Southern Pacific

Union Pacific

in addition, detailed track and operational data were provided by FRA for the
following railroads:

Atchison, Topeka, and Santa Fe
Burlington Northern
NDenver and Rio Grande Western

This information was then used to complete the location study (ifem 1),
and as an input to study items 2 through 5. The interaction and dependencies
of these activities are shown in Figure 1-1. With the station configurations and
energy requirements determined, it was then possible to complete items 6 through
8. AT The same time, study of the operation of WESS as a peak-shaver on elec-
trified railroads (item 9) was accomplished. The important engineering economic
analysis (ifem 10) was then completed, using inputs from items 1 through 9.
Finally, as shown in Figure 1-1, development plans were formulated (item 11);
This task was followed by various program review and documentation activities
(items 12 through 15).

TRAIN PERFORMANCE CALCULATOR

After the study was under way, a task was added to the WESS program by
AiResearch as part of the power and energy calculations (item 3) to permit more
accurate and complete assessment of energy savings based on actual railroad
operations. During the initial work on energy calculations, it was found that
the energy economics of WESS were strongly influenced by the operating timetable
of the railroad. To determine the interactive effects of as many as 60 trains
per day on a WESS grade, it was necessary to use a frain performance calculator
(TPC) with the capability of calculating energy at the WESS station for many
trains at the same time. The AiResearch and Bechtel TPC programs do not have
this capability, nor does the TSC program. Therefore, AiResearch decided to
generate a new TPC with the required capability of simultaneously calculating
the enerqgy requirements in a complete railroad division. The new AiResearch
TPC can calculate the energy requirements of up to 100 trains operating on 10
separate electrified sections. These individual train energy values can be
summed by the computer to provide the energy values that would be experienced
at WESS stations on the route.

As a demonstration of its versatility, tThe new TPC has been used
to calculate the complete energy profile for a full day of operation on the
Pittsburgh-Harrisburg section of Conrail, based on actual dispatcher's records.
This unique TPC has been developed within the resources of the Wayside Energy
Storage Study contract. In the intferesTt of making this important tool available
to TSC, FRA, and other agencies, the new TPC listing is presented later in
This volume.
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FORMAT OF F INAL REPORT

The sheer volume of material generated during the l-year Wayside Energy
Storage Study has necessitated publishing this report in three volumes. Volume 1
briefly describes the work conducted, the results achieved, and the conclusions
reached. The main body of technical data, including the new TPC, is contained
in the present volume. The extensive engineering economics analysis data and
results are contained in Volume 3.



SECTION 2

SYSTEM DESIGN AND CONCEPTS

The study of the wayside energy storage system (WESS) design involved
the following interacting program work items which were described in detail
in Section 1:

Item 2 System Study

Item 4 Dual-Mode Locomotive
Item 5 Wayside Electrification
Item 7 Contfrols

Item 8 Energy Supplement

Item 9 Electrified Railroads

The approach used for the study and the results obtained are described in
the following paragraphs.

APPROACH

The systems study first examined al!l the plausible energy storage means
that had potential for application to WESS; next the various methods of trans-
mitting the recuperated energy back and forth fo the wayside at the grade were
analyzed. Overall system configuration tradeoff studies were then conducted
and optimum arrangements were selected. At this point the operational con-
straints indicated by meetings with railroads were applied to the system concepts
and used fo develop the most practical operational concepts. Then consideration
was given to the electric locomotives that would be used for WESS on electrified
railroads, and, finally, the dual-mode locomotive concept was developed.

PLAUSIBLE ENERGY STORAGE SYSTEMS

Prior fo embarking on the detailed study of flywheel-configured WESS
stations, a final comparative analysis was made to establish that no other
energy storage technique should be considered. The important criteria that
were used in assessing the relative merits of an energy storage device for
WESS are:

) Round trip efficiency

° Deep discharge cycle life

. Energy density

) Power density
° Initial cost
° Maintenance cost



The use of these criteria in the analysis resulted in the identification and
consideration of the enerqy storage techniques described below. Comparative
data for the major characteristics of these energy storage systems are shown
in Table 2-1.

Batteries

The energy density of fhe battery often is higher than that of the fly-
wheel; however, fhe battery is clearly inferior To the flywhee!l in power
density (charge or discharge rate capability). This low battery power density
often sizes the battery. For example, for a 5 Mw-hr bafttery with an energy
density of 14 w-hr/lb, The power density would be expected to be the lower
value of 10 w/lb as shown in Table 2-2. Then the battery weight based on
energy density would be 180 tons, while the weight based on power density
would be 250 tons. The latter weight would then be required for the WESS
applications

The deep discharge cycle life of the flywheel is its most important
attribute since in WESS service the energy storage system could see as many as
40 charge~discharge cycles per day. The projected life of the flywheel at this
level of service would be 55 years while that of the batfery would be only
38 days.

The cost differential shown in Table 2-1 between the battery and flywheel
is of negligible concern when the comparable useful lives are considered. In
addition, the battery would require a high leve! of maintenance (changeout,
watering, equalizing, efc.) compared to the flywheel, which is compatible with
long, unattended operation.

The round frip efficiency of the battery (i.e., usefu! discharge energy
divided by charge energy) is very low (60 percent) compared with that of the
flywheel (i.e., useful spin-down energy divided by spin-up energy), except
for very long charge-discharge cycles.

The flywheel clearly offers by far the better combination of characteris-
tics for the WESS application as shown in Table 2-1. Consideration was also
given To projected new battery types such as nickel zinc, zinc chloride, and
sodium sulfur which are expected to become available within the next 10 to 15
years (ref 1).* Although these battery types promise higher energy and power
densities than the lead-acid battery, their economic deep discharge cycle lives
are not expected To exceed 2500.

Pumped Hydroelectric

The pumped hydroelfectric system could be used for WESS, especially since
mountainous terrain is involved, but investigations by AiResearch and Bechtel
have shown that installation costs are about twice that for a flywheel system
(although it is recognized that costs of these schemes are very much dependent
on the terrain encountered). For the typical 10-Mw scheme developed later in
the study, a cost of $700/kw could be expected, assuming that there were no
abnormal difficulties associated with construction. Such installations make
use of reversible turbine sets which, when pumping, have an efficiency of

* References are listed in Section 8.
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TABLE 2-1

ALTERNATIVE STORAGE CONCEPTS

Round Trip
Efficiency, Installed, Cycle Service

Storage Concept percent $/kwhr Life Life
Battery 60 70 1000 2 Months
Pumped hydroelectric 76 1000 106 30 Years
Regeneration to utility 92 © 120 106 30 Years
Compressed air 37 N/A 100 30 Years
Flywheel 91.2 270 100 30 Years

*Site-dependent

TABLE 2-2
ENERGY STORAGE SYSTEM COMPARISON
(Based on existing technology
applied to full-size systems)
Present Flywheels

Characteristic Batteries

Energy density, W-hr/Ib 8 to 14 3 to 12

Power density, W/ib 10 to 30 100 to 200

Deep discharge, W/lb 500 to 1500 100

Cost, $/kwhr 100 270

Round trip efficiency 60 percent 91.2 percent

85 to 90 percent, and when acting as a turbine, have an efficiency of 90 to 95
percent. Therefore, the round trip efficiency of the pumped hydroelectric
system is typically 75 percent compared with 91.2 percent for the flywheel.

Regeneration to the Utility

This ftechnique is technically attractive, having the high round trip
efficiency of 92 percent; however, economically it suffers from the disadvantage
of not getting a full credit for the energy returned (usually only 60 percent
for a railroad-type operation), and there would be no credit for the demand por-
tion of the utility change (which normally accounts for 50 percent of the utitity
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bill). Therefore, the vaiue of the energy saved is significantly lower than for
the flywheel configured system, amounting to approximately one~third of the ori-
ginal cost.

Compressed Air Storage

This storage system is based on gas turbine technology and consists of gas
turbines compressing air in large underground storage caverns. During regenera-
fion, the generators, running as motors, would "recharge'" the air-storage caverns.

During discharge periods, the high-pressure air from underground storage
caverns is released to spin the plant's turbine generators and provide the
required energy fto the railroad.

Potentially suitable air-storage sites include underground salt formations,
depleted oil and gas wells, and played-out mines.

IT is expected that this novel approach to energy storage will be of increas-
ed importance in the coming years; however, in the immediate future it is not con-
sidered suitable for WESS because of its low round trip efficiency and the improb-
apility of finding a conveniently sized underground cavern near a WESS candidate
grade.

Flywheels

The flywheel is probabiy the oldest energy storage technique known to man.
The most common application is on the reciprocating engine where energy is stored
between each power stroke of a piston to provide a near-constant output of torque
from the crankshaft. The larger the flywheel, the less the variation in torque
output. In the WESS application, the flywhee! has most of the advantages of
direct regeneration to the utitity (including a high round trip efficiency of
91.2 percent) with the advantage of receiving full credit for regenerated
energy. The life of the system is in excess of 106 deep discharge cycles, and
the energy and power densities are at least competitive with those of the battery.

Large~-flywhee! technology is expected to make a significant advance during
1978 with the commissioning of the Tokomak flywheels, which are described in
detail fater in this report. Therefore the WESS flywheel will be within the
state of the art.

As a result of this analysis, summarized in Table 2-1, AiResearch has deter-
mined that, within existing technology, the flywheel represents the most economic
and efficient method of storing onergy for reuse at a later time not exceeding
24 hr.

ENERGY TRANSMISSION CONCEPTS

A key decision in the Wayside Energy Storage Study was the determination
of The most practical and cost-effective means of fransmitting energy to and
from freight trains on a grade. At the locomotive, during braking, this energy
exists in dc electrical form and alsc could be used by a subseguent ascending
locomotive in the same form. Thus, it appeared logical to analyze various means
of electric fransmission of energy fo the wayside.
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The basis of all the systems is that the potential energy of the descending
train is converted to electrical energy and transmitted to the wayside station
where it is stored in a fiywheel. Subsequently, this process is reversed, and
stored energy is transferred to an ascending train. All systems therefore
require an electrical distribution system matched to onboard locomotive and
wayside equipment,

The following arrangements were considered for transmitting electrical
power to the wayside:

® Low-voltage dc through a third rail
° High-voltage dc through a catenary
® Linear induction motor

. High-voltage ac through a catenary

The technical tradeoffs involved with the various means of energy trans-
mission are described in the following paragraphs.

Low-Voitage Dc Third Rail

The common 600~ to 1000-vdc third-rail system that is used for rapid
transit systems as well as for operating efectric switching locomotives in
electrified freight yards was the first candidate considered. |In this system,
power is transmitted to and from the third rail by collector shoes on each
locomotive. Thus, when descending the grade, the locomotive traction motors
would act as dc generators supplying power to the third rail for fransmission
to the wayside. At the flywheel station a converter would be used to condition
this power to a suitable form to drive an electric machine that would be con-
nected to the flywheel. The power from the descending train would thus be
used to spin up the flywheel. The discharge of the flywheel to deliver power
to a subsequent frain climbing the grade would be the reverse of the charging
sequence.

From the locomotive standpoint, the low-voltage system appears attractive
since only minimal modifications would be required to an existing diesel-
electric locomotive. This point is important since about 99 percent of the
U.S. freight operations are accomplished by diesel-electric locomotives. There
are presentiy only four electrified freight lines in the U.S.; these are:
Conrail on the Northeast Corridor from New Haven into Washington and Harrisburg,
Black Mesa and Lake Powel!l Railroad in northern Arizona, Muskingum Railroad in
southeastern Ohio, and Texas Utility Company Railroad in Texas.

A calculation was then made of the third-rail requirements for electri-
fication of a typical WESS grade. For this analysis it was assumed that a
typical WESS site consisted of an elevation change of 1500 ft with an average
grade of 1.0 percent. The length of this grade is then 23.6 miles with a way-
side flywhee! station assumed to be at the midpoint. A typical freight consist
operating at the grade would have three 3000-hp diesel-electric locomotives
(equivalent to the General Motors Electro-Motive Division (EMD) Mode! SD40).



I f the locomotives were used to provide their full braking capability of
4000 rail hp (the higher braking capability is fully explained later in this
section), this would result in the delivery of 3560 hp to the third rail from
each locomotive due to the generation efficiency. The total train power into
the third rail of 10,680 hp at 600 vdc would result in a current level of
13,300 amp. The transmission of this current from the extremities of the
typical grade to the flywhee! station with a 25~percent voltage drop would
result in a two-way voltage drop of 12.7 v per mile. The third-rai! resistance
based on an equivalent resistance return path can then be caiculated as follows:

Third-Rail Resistance = _Yo!Tage Drop

Current
or,
Third-Rail Resistance = 6235 VY = 0.48 ohm
13,300 amp

The required conductor size based on the use of soft annealed cooper is
the equivalent of 539 AWG 4/0 conductors, which would have a cross section of
89.6 sqg in. (a square conductor 9.5 in. on a side), which would have a weight
of 911 tons per mile. Clearly, such a third-rail conductor is impractical
(particularly since an equivalent return rail would be required because the
running rail resistance is far foo high to be a suitable refurn).

High-Voltage Dc Catenary

The second transmission system considered was a high~voltage dc system
possibly similar to the 3-kv catenary used by the Milwaukee Road in Montana
and Washington until 1974 (ref 2). This application made use of special high-
voltage dc locomotives with frequent catenary feed points. The Milwaukee Road
system was regenerative back to the catenary providing for the use of braking
energy by other trains operating over the electrified sections.

The application of a high-voltage dc catenary system to WESS would require
modification of both the present diesel-electric and electric locomotives
(which operate at high ac voltages) to be compatible with dc operation. In
the more important case of the diesel-electric locomotive, the conversion from
high-voltage dc to low-voltage dc (and vice versa) requires a dc-to-dc voltage
transformation that must be accomplished by a retatively expensive solid-state
power conditioning unit. Unfortunately dc cannot be transformed in voltage as
simply as ac power with a ftransformer. The dc~to-dc converter required for
propulsion would consist of an inverter that changes the high-voltage dc to
high-voltage ac power, which can be simply fransformed to low-voltage ac.

The resulting ac power would then be rectified and supplied to the locomotive
Traction motors. During braking operations, the low-voltage converter must
act as a dc-fo~ac inverter whose output is stepped up to be rectified for
connection to the catenary.

The complexity of the converter required in which both high~ and fow-
voltage sections must act as either an inverter or a rectifier was found to be
prohibitive from a cost standpoint for serious consideration in the WESS study.



Current railroading practice has tended fo draw away from high-voltage dc
catenary systems in favor of high-voltage ac systems largely because of the
compiexity and cost of the bilateral converter,

Linear Induction Motor

A brief analysis was made of the use of a linear induction motor (LIM)
for ftransmission of energy from train to wayside and back. This concept at
first glance appears attractive since energy can be transmitted across the LIM
air gap inductively without need for a catenary and pantograph. The findings
were that the LIM has very low round-trip efficiency compared with catenary
systems (32 percent compared with 96 percent for a catenary system—-both based
on the distribution system). In addition, the initial cost of installing the
LIM stator magnetic structure between the running rails for a distance of 23
miles on a typical grade was found to be excessive (at least twenty times the
cost of providing a catenary).

The combination of low efficiency and high cost, which is characteristic
of the type of LIM required for the WESS application, resulted in dropping
this concept from considerations at an early stage of the study.

High-Voltage Ac Catenary

The current practice on electrified U.S. railroads is to use a high-voltage
ac catenary for electrification. Recently the preferred voltage is 25 kv, 60 Hz
on older, congested routes with tTighter clearances like the Northeast Corridor
(this is the new electrification that will replace the present 11-kv, 25-Hz volt-
age and is also beiny proposed for the extension from Harrisburg to Pittsburgh).
The electrification of Western railroads has generally been directed toward
the use of 50 kv, 60 Hz as is the case with the Black Mesa and Lake Powel |
Railroad.

The WESS concept configured with a high-voltage ac catenary is readily
compatible with the use of present electric locomotives provided these units
are modified to provide regeneration back to the catenary. This modification
involves the conversion of the semi-controlled rectifiers in the locomotive 1o
fully controlled rectifiers, which can be accomplished by replacing the silicon
diodes in the lower arms of the present bridges with thyristors, as shown in
the schematic of Figure 2-1, and making the necessary changes in the control
circuitry. The fully controlled rectifiers then would act as line commutated
inverters during braking, coupling energy to the catenary. This arrangement
is simitar to that which has been used on the four regenerative electric loco~
motives built by ASEA, one of which is currentiy operating in Rumania. The
same modification could be applied to either new or existing General Electric
Model E60 electric locomotives.

Regenerative locomotives are currently in widespread use in Switzerland
and the Soviet Union. Presently 52 of the order of 89 Brown Boveri Company
(BBC) Model RE 6/6 electric locomotives are in service on the Swiss National
Railways, providing regenerative braking for freight operations (refs 3,4).
The extent of Soviet deployment of regenerative locomotives is not known since
no published information is available.
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The regenerative electric locomotive could be directiy used with WESS on
presently electrified railroads. These locomotives could also be used as
helpers to operate freight consists over grades with local electrification.
The implications of this tatter mode of operation will be discussed later in
this section of the report.

The important question of making the present diesel-electric locomotive
compatible with the high-voltage ac catenary was then addressed. The first
approach studied was the use of slugs that would be added to the consist at its
originating yard. These slugs would be fitted with a panfograph fo pick up
power from the high-voltage ac catenary at the grades. This power would be
stepped down in voltage by a transformer and then rectified by a two-section
phase delay rectifier to provide a controlled dc voltage as shown in the
schematic of Figure 2-2. This controlled dc voltage would then be connected
to the traction motors of the diesel locomotives in the consist and also to
a sef of traction motors on the slug. The freight train would operate under
diesel power up tfo the WESS grades, at which point the diesel engines would be
unioaded and run at a sufficient speed to provide auxiliary power, and the
slug would be used to provide the power to all the fraction motors in the
consist fto operate the train regeneratively over the grade. In the sections
of the route between WESS grades, the siug could use power from the diesel
locomotives to operate its fraction motors, thereby increasing the low-speed
tractive effort of the train, reducing the adhesion requirement, and possibly
reducing the required diesel locomotive consist,

The idea of using slugs as helpers located only at the grades was rejected
because of the difficulty of breaking the locomotive consist to place the slug
between locomotives at one end of the grade, and to remove it at the other end.

The concept of using slugs was ultimately abandoned largely because of
the difficulties foreseen in coupling the required high currents from the slug
to the locomotives. The peak current requirement of an EMD model! SD40 loco-
motive is 1000 amp per fraction motor or 6000 amp per locomotive. Thus, if a
slug were located in the middle of a consist of four locomotives it would be
necessary to couple 12,000 amp through the adjacent locomotive couplings and
6000 amp through the remote focomotive couplings. The conductor size required
for the connection of the slug to the diesel-electric locomotives is equivalent
to 20 AWG 4/0 conductors that have a total cross-sectional area of 3.32 in.2
This requires fwo 2.0-in.-dia copper cables to be installed on all the locomo-~
Tives that would be used on the WESS grade. This requirement along with the
minor modifications in locomotive controls to provide for operation on the
WESS grade with power supplied from the slug does not appear impossible to
provide; however, the connection of the slug to the other locomotives in the
consist does pose a formidable obstacle, since these connections must be capable
of being made automatically as part of the coupler (the use of manual connec-
tions for this purpose has been found to be operationally unacceptable to the
railroads contacted). An investigation was made into the development of an
automatic connector with the necessary capability since nothing even remotely
similar is presently available. The results have shown that such a development
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would necessarily be expensive and without a guarantee of success. The reason
is that the contact resistance that must be initially achieved and Then main-
tained under all operating conditions is so low as to be virtfually unattainable.
For example, a contact resistance at either connection of only one milliohm
(which is the resistance of one foot of AWG 10 wire) would result in a local
power dissipation at that point of 144 kw. |t was on the basis of the difficulty
of making these power connections that the slug concept was dropped.

The second locomotive concept that was investigated for compatibility with
the high-voltage ac catenary was the dual-mode locomotive. This is a modified
diesel-electric locomotive that can be operated either conventionally with the
diesel engine or as a regenerative electric locomotive deriving its power from
the catenary. The modifications that are described in detail later in this sec-
tion consist of the addition of a pantograph, transformer, power converter, and
traction motor choke. Also, the traction motors are to be rewound for separate
field excitation, and the controls are to be altered.

The results of the dual-mode locomotive study showed the feasibility of
this concept. The detailed findings of this investigation, which are described
later, revealed that the dual-mode locomotive could meet all the requirements
for WESS while providing compatibility with operation on a high-voltage ac
catenary.

The WESS concept then could be deployed with regenerative electric loco-
motives on electrified railroads or helpers on electrified grades and as an
alternative with dual-mode locomotives operating over routes where only selected
grades are electrified for energy recuperation.

Thus, the first conclusion reached in the systems study (ltem 2) was that
the optimum system for transmission of energy from frains to the wayside is by
a high-voltage ac catenary. The voltages recommended are 25 kv for railroads
where clearances are limited and 50 kv for more wide~open railroads |ike those
of the Western U.S.

The overhead line equipment was designed and costed by Bechtel. The
system is designed for 70 mph with multiple-pantograph operation. The simple
catenary construction is used in which the contact wire is supported from
a single messenger wire by droppers. This is similar to the arrangement used
on the Black Mesa and Lake Powell railroad, as shown in Figures 2-3 and 2-4.

The support structures will be wooden poles except in the Pennsylvania
area where steel poles are considered more appropriate.

A study of the cost of electrification showed that the cost in 1977
doltars could vary as shown in Table 2-3 (ref 5).



Figure 2-3. Typical Overhead Line Equipment
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TABLE 2-3

RANGE OF ELECTRIFICATION COST FROM REFERENCE 5

Electrification Cost, 1977 Dollars

Estimate Single Track Double Track
Low estimate $125,000 $205,000
High estimate $350,000 $495,000

The costs quoted in Table 2-3 do not include the cost of the conventional
utility tie-in associated with railroad electrification. Before it was decided
whether a utility tie~in was necessary, the energy supplement study (ltem 8)
addressed the question of the optimum source of additional energy required to
move the ascending train up the hill. Clearly some form of energy suppl!ement
is necessary since the energy regenerated by the descending train is subjected
to the system inefficiencies (discussed later in this section). Therefore,
AiResearch considered four sources of energy supplement:

] Locomotive diesel engine (for the duai-mode locomotive)
° Gas turbine generating unit
® Diesel generator unit

. Utility tie~in

Since the prime object of the WESS program is to save oil, those sources
of energy supplement directly dependent on oil products were not favored in
principle; however, the economic case for each of the three latter alternatives
was investigated, and the results are shown in Table 2-4.

The saving in energy cost of the utility system is compared with the diesel
system and has & net present value of $0.8 miliion, based on the 30-year project
life. The clear conclusion reached was that the utility fie-in represented the
most economic and energy-efficient source of energy supplement; however, there
may be isolated locations where the cost of provision of a utility tie-in
exceeds the average value used in Table 2-4 by such a margin that the diesel
engine alternative should be considered.

The costs of electrification used in this study (including the utility
tie~in, catenary, signalling, and substation) are shown in Table 2-5.

Compariscn of Tables 2-3 and 2-5 shows that the electrification costs used
in this study are conservative, and this is reflected later in the study when
the return on investment for electrification schemes is seen to be lower than
figures normally quoted.



TABLE 2-4

EVALUATION OF ENERGY SUPPLEMENT OPTIONS

Characteristics

Utitity

Diesel

Gas Turbine

Heat rate/fuel consumption

Energy efficiency at
generator output terminals

Energy efficiency at
railroad metering point

Daily energy requirement
Power source capacity
Fuel
Supply availability
Initial cost
Daily cost

Energy cost

Power cost

Total supply cost

9500 Btu/kwhr

36 percent

34 percent

96 Mwhr
400 Mw
Various
100 percent

$1,250,000%*

$1920
$ 838

$2758

0.36 Ib/bhp hr¥*

32.3 percent¥

31.6 percent

96 Mwhr

4 Mw

DF2

95 percent

$800,000

$3034

$3034

0.42 Ib/bhp hr*

29,2 percent*

28 percent

96 Mwhr

4 Mw

DF2

98 percent

$1,600,000

$3427

$3427

*At rated output
*¥Based on average cost of

tie~ins identified

TABLE 2-5

in this study.

ELECTRIFICATION COSTS DERIVED BY BECHTEL FOR THIS STUDY

Electrification Cost/Route Mile, 1977 Dollars

Single Track

238,000

Two Tracks

400,000

Four Tracks

500,000




SYSTEM CONF IGURAT IONS

With the decision to use a high-voltage ac catenary energy transmission
system for WESS, the next consideration was the definition of the entire system
to be deployed at typical grades.

Two basic railroad systems were considered, those that are or will be
electrified at 25 or 50 kv and those that are and wil! be operated by diesel-
electric traction. Examples of the former that have attractive grades are the
presently electrified (at 50 kv, 60 Hz) Black Mesa and Lake Powell| Railroad and
the Pittsburgh-to-Harrisburg route of Conrail, which is a candidate for 25-kv

60-Hz electrification. All large western railroads (like Union Pacific, Southern
Pacific, Santa Fe, Burlington Northern, and Denver and Rio Grande Western) are
examples of railroads that will probably continue to be operated by diesel-

electric locomotives.

Locomotive Equipment

After a high~voltage ac catenary system is chosen, the locomotive equip-
ment becomes fully defined, and the major elements are:

° Pantograph

° Transformer

° Fully controlled thyristor converter
. Smoothing choke

° Traction motors

A complete description of this equipment is given later in this report.

Flywheel Station Configuration

The choice of interface between the high-voltage ac distribution system
and the flywheel is not exclusively defined by the distribution system choice.
There are two basic choices for the flywheel machine:

° Nc flywhee! machine
. Ac flywheel machine

Initially, a large dc machine was considered for this application, since
such a machine places minimal constraints on the converter and is easy to
start up. A dc machine in the 10-Mw power range, however, would necessarily
operate at a much lower speed than the highly stressed flywheel, which would
require reducing gears to be used between flywheel and motor. These gears reduce
system efficiency and increase the maintenance requirements of the system. In
addition, the dc machine imposes the requirement for brush maintenance. Also,
the dc machine with its gearbox would be much larger and heavier than a com-
parable capacity ac machine and on this basis would adversely influence wayside
station cost.



The use of an ac synchronous machine for WESS was found attractive since
present commercial designs are available that are suitable for the application.
These machines can be provided in brushless configurations and can operate at
flywheel speeds, which results in minimal maintenance requirements. The con-
verter required to operate the ac machine is relatively complicated, since it
must accept a single~phase, constant-voltage, fixed-frequency input and must
deliver polyphase, variable-voltage, variable~frequency power to the flywheel
machine. Such a converter, however, is well within the present state of the
art. On the basis of these considerations, AiResearch recommends the use of
an ac synchronous flywheel machine to operate the flywheel.

The final decisions to be made in the energy transmission system reflect
assurance of the compatibility of WESS with the utility and standard railroad
electrification. The basic utility requirement concerns the phase unbalance
due to the single-phase load demanded by the railroad. Generally phase unbal-
ance is defined as:

Peak single phase load x 100
Utility short circuit capacity

Where utility suppliies are found to not be strong enough to meet this
requirement, there are two courses of action open: either a second feeder
or a solid-state converter can be used as described later.

Usually an electrified railroad makes use of more than one phase and
therefore, by definition, the flywheel converter must have the capability of
accepting more than one phase as input before reconfiguration to variable-
frequency, three-phase output to the flywhee!l machine. The optional schemes
available are shown diagrammatically in Figures 2-5 to 2-11.

Figure 2-5 shows a system that is not compatible with normal railroad
electrification, since it involves the use of a variable-frequency catenary,
the frequency being defermined by the flywheel speed. This system was dis-
regarded due to the difficulties in providing electrical equipment suitable
for the frequency operating range. In particular the locomotive transformer
would require sizing for the lower frequency, which would impose unnecessary
restraints when it is considered that this system does not reduce the hard-
ware requirements when compared to the systems considered below.

The system shown in Figure 2-6 is compatible with standard mainline
electrification. The catenary has the same phase either side of the neutral
section and therefore direct regeneration from one locomotive to another is
possible without involving the flywhee! converter. This system is compatible
with the Black Mesa and Lake Powell Railroad system. The system shown in
Figure 2-7 is identical to that of Figure 2~-6 except that a converter is used
to ensure full balance of the railroad load at the 3~phase utility tie-in.

Figure 2-8 shows the typical railroad electrification using more than
one phase with unbalance at the utility. The regenerating locomotive returns
energy to the flywheel converter, where it is either phase shifted and
returned to a receptive locomotive or reconfigured to 3-phase variable fre-
quency and supplied to the flywheel machine. Figure 2-9 shows the same system
with the addition of a utility balance converter.
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The converter logic for the above schemes requicés subcyclic decision-
making; that is, at each instant in time the converter must be able to decide
whether energy should be returned to the catenary, the flywheel machine, or the
utility. This represents an expensive addition to the converter and, to mini-
mize costs, a method of avoiding the subcyclic decision process was considered.

The systems avoiding subcyclic decisions for one- and two-phase catenaries
are shown in Figures 2-10 and 2-11. Essentially the flywheel machine is allowed
to absorb the energy of each half-cycle so that, if condiftions change during the
half-cycle, the converter is not required to redirect the energy during that
period. Therefore subcyclic decisions are not required. To achieve this,
however, an additional converter is required for the normal railroad two-phase
catenary, and therefore the cost of converter equipment is higher than for the
subcyclic decision converter.

Therefore, the basic decision was to use the system shown in Figure 2-7,
The transformer coupling the utility To WESS is a three-phase to ftwo-phase
connection designed by Gibbs & Hill (Figure 2-12) that has been demonstrated
in service at fthe Cos Cob substation of the Northeast Corridor. This trans-
former connection has been shown fo be superior in operation to the familiar
Scott-connected tee arrangement commonly used for three-phase fo two-phase
transformation.

SYSTEM EFFICIENCY
A critical characteristic of the WESS system is its efficiency. After the
optimum system shown in Fiqure 2-7 was defined, the overall system efficiency

was determined as described below.

The system comprises three discrete subsystems:

® Locomotive
® Distribution
e Flywheel station

Each subsystem may be considered separately.
LocomoTive

The mechanical energy availabie at the wheel of a braking locomotive
passes first through the traction motor assembly (comprising gears and a trac-
tion motor), where electrical and mechanical losses result in an energy loss
that is speed- and load-dependent. Figure 2-13 shows the efficiency curve
for the D77 traction motor as published by EMD. |t can be seen that fypically
the efficiency of the motor assembly is 90 percent.
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MILES PER HOUR AND EFFICIENCY
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Figure 2-13. D77 Traction Motor Characteristics for 3000-hp SD40 Locomotive
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The energy, now in electrical form, passes from the fraction motor to the
converter, where a forward voltage drop of 1.5 v per device occurs. This re-
sults in a converter efficiency of 98 percent. Losses in the locomotive
transformer during step-up in voltage to 25 or 50 kv are load dependent but
may be assumed typically fo result in an efficiency of 96 percent. Therefore,
the overal!l efficiency of the locomotive regeneration system is 84.6 percent.
Similarly 84.6 percent of the energy derived from the pantograph during pro-
pufsion is delivered to the locomotive wheels as useful energy.

Distribution System

From the locomotive pantograph to the flywheel station energy losses are
dependent on locad and distance from the feeder point. Typically an efficiency
of 96 percent is reasonable.

Fiywheel Station System

Electrical energy from the distribution system received at the flywheel
station is reconfigured from 25-/50-kv, single-phase, 60-Hz supply to 25-/50-kv,
three phase, variable-frequency (flywheel speed dependent) supply. The losses
in the converter are load dependent. Losses in the flywheel machine are load
and speed dependent. On a typica! duty cycle the efficiency at the flywheel
converter and machine is estimated to be 96 percent.

The losses in the flywheel (bearing and air friction, ancillaries, etc.)
amount to 1.5 percent per hr at full speed and 0.5 at half speed. Therefore the
efficiency used in this study (99 percent) represents a conservative estimate.

The system efficiency diagram is shown in Figure 2-14. Consideration
of the overall system shows system efficiency at 60 percent. That is, 60 per-
cent of the energy available at the whee! of the descending frain is available
for reuse at the wheel of a subsequent ascending train.

The typical figures for efficiency derived here were not used in the
detailed calculations made 'ater in the study.

OPERATIONAL CONSTRAINTS

During the study AiResearch had many discussions with railroads, from which
a number of operational constraints appeared. These constraints are addressed
below.

Adhesion

A great deal of research has been undertaken by various organizations around
the world in an attempt to understand railroad adhesion and its characteristicse.
The deployment of WESS demands that, whichever option is adopted, a fully con-
trolled thyristor bridge circuit is used fto control the traction motors. This
enables the question of the assumed adhesion level to be re-examined and designs
to be optimized.

The advent of the thyristor has enabled fraction engineers to assume trac-
tive effort/axle load ratios that would not have been considered a few years
before. A steep tractive effort/speed curve was an advantage when an axle
slipped. |f the curve was steep enough, spontaneous recovery of adhesion
resulted.
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The use of thyristors (either in the main power circuit or in field controf,
or both) facilitates individual motor control, which eliminates the difficulty
in ensuring equal distribution of current values between sets of motors. Then
when slipping does occur, the action taken is timited only to the motor affected
and does not entail a general reduction of current in the other motors with
consequent loss of tractive effort.

To operate at the practical limit of adhesion it must be possible fo vary
the firing angle of the thyristors rapidly and frequently. Unlike mechanical
systems involving moving contacts, variation of the firing angle involves no
wear and does not in any way affect the life of the thyristor. This fact has
fundamental implications as regards the ideal system of regulation for making
optiumum use of existing adhesion.

With individual supply to the motors, no constraints are encountered
other than those related fo the difference in wheel diameter permifted by the
user railroad. This is not a major problem since, with the thyristor, each
motor can be operated at the limit of adhesion.

The thyristor, with good slip correction and current regulation, makes
it possible to dispense with all The ingenious mechanical and electrical devices
designed to offset weight transfer (which is a product of the tractive effort
and coupler height and can never be eliminated altogether). Once speed builds
up, it should be realized that axle loads vary quite appreciably anyway. Con-
sequently, all the devices intended to improve weight distribution under quasi-
static conditions have little real effect during conditions of normal running.
The benefit of individual axle control, as applied to a fTypical U.S. locomotive,
is analyzed later in this report.

It is generally stated that the adhesion of an electric locomotive is
greater than that of a diesel; this is incorrect. [f the electric transmission
were to be treated similarly in the two types of locomotive, the same results
would be obtained in terms of the use of adhesion. 1In any case it must not be
said that a type of locomotive has "an adhesion of X percent." No locomotive
can "produce" adhesion: al!l that can and should be expected is that the loco-
motive makes optimum use of the adhesion existing between wheel! and rail. |If
there is six percent adhesion available between rail and whee!l, no locomotive
can extract more.

The only way to raise the adhesion coefficient in particutarly unfavorable
conditions is by putting down sand, or perhaps cleaning the rail with a chemi-
cal. Sanding is very efficient, and can be combined with the anti-slip func-
tion. The extremely sophisticated automatic devices now available are able to
decide for themselves when to introduce foreign matter, whether sand or
something else.

IT is considered, therefore that, in view of the foregoing an adhesion
level of 22 percent may be assumed for separately excited, thyristor-controlled
motors, using creep prediction techniques for both dual-mode (electric/diesel)
and electric locomotives.

2-29



Head-End Brake Limitation

Because the dynamic brake concentrates the braking force and braking power
at the head end of the train, there are practical |imits concerning the amount
of braking that can be achieved with the dynamic brake alone. The ideal situa-
tion for WESS is to have the locomotive units do all the braking; however, the
division of the braking work done by the cars and the locomotive units equipped
with regenerative brake is important in order to obtain the best train operation
in any particular situation. In practical terms, it has been found that from
200,000 to 240,000 !b of retarding force concentrated at the locomotives is the
most that should be used when going through turnouts, into and out of passing
tracks, and on sharp curves (ref 6). A large consist of modern diese! engine
units has the capability of producing considerably more than 240,000 !b of
retarding force with the dynamic brake. Caution must be exercised in the amount
of dynamic brake that is to be used not only for grade braking operations, but
also for assisting the slowdowns and stops.

The limit as fo the number of axles and motors in dynamic braking for
reliably safe operation depends upon:

(a) Type of equipment. Units with pin type couplers and no alignment
control features must have bolster stops applied to allow operation
in consists with units capable of high dynamic braking effort. The
bolster stops |imit bolster-to-truck-frame lateral clearance to 1/2
in. on each side, thereby limiting lateral rail forces when units
are subjected to buff loads.

(b) Particular track profile conditions.
(c) Engineer's skill.

(d) The practical limit for dynamic brake is often stated as '"no more
than 24 motorized ax!es may be operated in dynamic brake from the
lead locomotive of the consist™.

Calculations of power and energy regenerated during braking must take into
account this limitation. When necessary the required brake force could be
achieved by adding helper locomotives part way down the frain or using the air
brake to supplement the dynamic brake.

It is proposed that the brake force developed by any group of locomotives
modified for WESS operation will be automatically limited to 240,000 Ib to
enable braking effort to be developed by a remote group of locomotives as
required. In the calculation of power and energy for this study, the head-end
braking force was limited to 210,000 !b.

Axle Load Limitation

While it is recognized that axle loads should be kept fo a minimum to
reduce track and truck maintenance, it has been considered reasonable fo
assume the current maximum axle loads when calculating usable tractive effort.
The maximum static axle load assumed for performance calculations was 68,300
Ibfe
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Dedicated Locomotives

Railroad operations depend on flexibility: the ability to be able to
send any locomotive anywhere at any time. |t is recognized that most railroads
prefer to keep certain l!ocomotives operating within specific divisions but
these are not necessarily dedicated locomotives since they have the ability
to go anywhere at any time as required. Therefore, any scenario developed for
WESS that requires modifications to existing locomotives or the introduction
of new locomotives, with neither able to operate outside a small specific
route, would probably have difficulty in gaining acceptance by the railroads.
The key to the problem is probably found in the size of the route to which
locomotives must be restricted in relation to the amount of through traffic.

As a general rule it has been assumed in this study that a diesel-loco-
motive fleet may, under normal conditions, be restricted to operate between
two nominated classification yards. When a service disruption occurs the
dedicated fleet may be used anywhere on the system, and standard locomotives
are able to use the routes where WESS is deployed (without, of course, the
benefit of WESS).

Electric locomotives, of course, are constrained to operate in electri-
fied areas only.

Examples of routes that are assumed to accept dedicated fleets are:
Harrisburg-Pittsburgh Conrail

Los Angeles-Salt Lake City Union Pacific

Salt Lake City-Omaha Union Pacific
Los Angeles-Belen Santa Fe
Colton-EI Paso Southern Pacific
Sacramento-0gden Southern Pacific

Signals and Communications

At the present time most railroads use dc track circuits for wayside
signaling, and 60-Hz carrier systems are used for in-cab signaling. Data are
transmitted between signal locations by overhead open-wire lines running along
the right-of-way. Communications are handled by microwave data |ink and/or
open-wire overhead lines where relatively long distances are encountered.

These and other types of signaling and communications systems are vulnerable to
intferference brought about by electrification catenary systems, and each one
must be considered with appropriate corrective modifications to be compatible

for electrification. The electromagnetic and electrostatic fields developed by

a catenary system can, and usually do, induce currents and voltages in signaling
and communications systems closely associated with railroad operations that are
adverse fo operations. The source and effects must be considered and appropriate
action taken to keep these effects within tolerable limits.
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The electrification analysis undertaken by Bechtel included consideration
of the modification of the existing signalling systems on the specific routes
in question. The AT&SF and UP routes are present!y signalled with dc track
circuits and therefore require replacing with 100-Hz or 92-2/3-Hz circuits to
achieve compatibility with electrification at 60 Hz. The track circuit lengths
will be reduced to about t mile, which is about the maximum length for satis-
factory operation of track circuits under electrified sections, to keep the
induced voltaye to acceptable levels.

Electrification

It has been established (ref 7) that most of the grades suitable for
WESS are on routes that are considered possible candidates for future electri-
fication (Figure 2-15 shows those major U.S. routes). This is hardly surprising
since both WESS and electrification require a high traffic flow to be cost
effective, This reinforces the case for constraining the WESS system to be
compatible with the mainline electrification systems proposed for use in the
U.S. and other interested countries.

All of the major raiiroads contacted have performed electrification studies
on routes that were later identified as WESS routes (that is, routes with many
WESS candidate grades). The economics of such a major capital investment,
however, have not yet been shown to be attractive enough to justify the funding
leve! required. As will later be demonstrated, the inclusion of WESS in an
electrification program significantly enhances the economics of railroad
electrification.

Operating Scenarios

Within the tota! system design, three operating scenarios have been identi-
fied. It is essential that the interface between the new and existing systems
result in the minimum disturbance to either system. The operating scenarios
are:

(a) Dual-Mode Locomotive--Under normal operations the routes under con-
sideration are assumed to be operated by dual-mode locomotives,
which are standard diesel locomotives retrofitted with pantograph,
transformer, and thyristor converter to enable the locomotive to
operate either as an electric locomotive when on a WESS grade, or
as a diesel locomotive when not "“under the wire." The changeover
from electric to diesel operation will be accomplished automatically
upon reaching the end of the electrified section or when the fly~-
whee! is nonreceptive. The power rating of these locomotives remains
unchanged in the diesel (primary) mode at 2600 rail horsepower
(rhp); however, in the electric (secondary) mode, it is increased
to the traction motor timit of 4000 rhp. Due to this increased
power rating of the locomotive when connected to the catenary, the
number of locomotives required to operate a given route is reduced,
and therefore so is the number of locomotives to be modified.
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An important spin-off from this scenario is that it allows an evolu-
tionary concept of electrification. That is, a railroad operating
dual-mode locomotives could electrify only the grades on its chosen
route at a substantial return on investment (ROI). Then, the sec-
tions in beftween the major grades gradually could be electrified.
This electrification concept allows the railroads to gain electric
operation experience before committing themselves to very large
investments.

(b) Electric Helper--When ascending/descending a WESS grade, the motive
power comprises diese! locomotives with the addition of up to two
electric locomotives. The latter are designed for high tractive
effort and !imited-speed, high-power, 50/25-kvac, 60-Hz operation.
At the extremities of the WESS sections, the electric locomotives
are detached to await the next train in the opposite direction. The
number of diesel locomotives in use is less than that normally used
because in most railroading operations the ruling grade determines
the number of locomotives required. When WESS is deployed, the
gradient duty is eased by the use of electric locomotives with high
tractive effort. This scenario is labor-infensive, and allowance
was made for having the electric locomotive crewed for 72 man-hours
per day fo take account of fravelling time fo and from the possibly
remote location of the WESS grade.

(c) All Elecfric--The entire railroad operation was assumed to be elec~
trified, and diesel power is used only for yard switching and spur
lines. WESS would not impose any particular procedure on the rail-
road method of operation other than the input of data to the wayside
energy storage system communications (WESSCOM), if such a system is
provided (see below).

The three scenarios described above are summarized in Table 2-6. Each of
these operating methods involves a change in the economics, cost, and procedures
and must be evaluated in detail for each grade under consideration. |t will
also be clear that the true cost of adoption cannot be considered on a grade-
by-grade basis since locomotive fleet sizes depend on traffic flows between
classification yards.

Operaticnal! Procedure

The scenarios defined in Table 2-6 may, as far as operational procedure
is concerned, be divided into the two types as described below.

1. Through Working of Motive Power

This applies to scenarios 1 and 3. In all cases there is no action required
by the engineer on arrival at the WESS site. Where necessary the pantograph will
be automatically raised using track magnets. When voltage has been established
at the tfransformer secondary, the control equipment will cut off the power from
the diesel engine and and reduce the engine to a speed at which it is able to
supply auxiliary loads. The traction and auxiliary power will be supplied from
the transformer. This state will continue until the flywheel is fully charged,
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TABLE 2-6

SUMMARY OF WESS SCENARIOS

New/
Whole Modified
Route Vehicles {Additional {Diesel
Elec-| New Usable Operating Loco- Special
fri- Vehicles [on Other |Labor motives | Stops
Scenario fied | Required [Routes Required Saved Required
1 Dual-Mode No No Yes No Yes No
2 Etectric No Yes No Yes Yes Yes
Hel per
3 Electric Yes Yes No No Yes No
Railroad
at which time power will be supplied from the utility. As a regenerating loco-

motive enters the section, direct energy transfer may take place. On arrival
at the end of the WESS-equipped section, the pantograph will be aufomatically

lowered in a sequence initiated by a track magnet and diesel power will be
restored.

In the case of the electrified railroad, the engineer will follow normal
rules and methods of operation and will have no visible indication of whether
the train is regenerating to the flywheel, to another train, or fto the utility;
and similarly he will have no indication of the source of the power. It is

proposed that a light should be provided to indicate to the engineer when
rheostatic brake is in operation.

2. Change of Motive Power at a Grade

This applies only to scenario 2. Consider a typical single-track layout:

/ \ /_/-—I I

A B

The track would be electrified from A to B, including the sidings, which
are those sidings nearest to the extremities of the grade. The train with the
electric locomotive leading departs from A and the electric locomotive performs
its duty as an interface with the distribution system. On arrival at the sig-
nal at B the train halts, and the electric locomotive is uncoupled and draws
forward onto the siding where it either couples immediately to a waiting train
or waits for an A-bound train to arrive. |t is expected that a crew of two
wou ld be permanently occupying The electric locomotive. The train from A is
now cleared to carry on its journey. When the A-bound train arrives, the
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electric locomotive is coupled and then departs, and on arrival at A the
uncoupling procedure is repeated. To handle two consecutive frains in the
same direction, a storage siding is required to store the spare eleciric
locomotive. The principle of operation for a double~track line is the same.

On routes where a number of grades exist but which are so far apart that
the track in between has not been electrified, the procedure adopted would
be as fol lows.

The train departs A as above but at the approach to the end of the elec-
trified section, the pantograph is automatically lowered by tfrack magnets and
the diesel engines take over completely, supplying the train power requirements.
On arrival at the next electrified section of track, the pantograph is auto-
matically raised, and the electric locomotive again interfaces with the dis-
tribution system.

At the final electrified section the electric locomotive uncouples as
described above.

Communication System

A wayside energy storage system communications (WESSCOM) link is essential
in situations where there is no utility tie-in to the system. The benefits of
such a system are not so clear-cut when a utility tie-in is available and
WESSCOM could only be used to optimize peak shaving. The benefit of WESSCOM
would then be the difference between a best guess at the required average
demand and the computer-predicted average demand.

A utility tie~-in is not essential to the railiroad/WESS operation in sce-
narios 1 and 2. The cost of provision of such a tie-in was considered against
the anticipated benefits in the study. |In cases where it is decided against
having the utility tie-in, it is imperative that the flywheel is not taken
below its minimum design speed by an excessive energy demand from an ascending
train., This could be achieved by opening the protection circuit breakers in
the feeder station without recourse to a frain/wayside communication system,
but the resulting loss in power and delay before diesel power was available
would be unacceptable. Furthermore, it is necessary to keep the system avail-
able at all times to accept regenerated energy, which would not be the case if
the feeder station circuit breakers were used fo protect the flywheel from
underspeed. |t has been concluded that a communication system is a necessity
at installations without a utility fie-in.

Where a utility tie-in is available, such as in scenario 3, the WESSCOM
system has to be evaluated against the quality of human judgment. In a com-
plex railroad operation where frains do not run to fixed timetables, it is
most probable that minimization of the peak demand could only be handled by
a computer,

Such a system is commercially available from the Reliance Electric Company
based on the Automate 31ML Programmable Controller. A flow diagram for the
system is shown in Figure 2-16.
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The microprocessor, located at each flywheel station will be programmed
to accept the following inputs:

° Estimated train arrival time (ETA)
® Train weight

® Train direction

® Train identification code

Time of arrival would initially be inputted by the dispatcher, but to provide
for unforeseen delays en route, provision will be made in the system for auto-
matic and manual update of the arrival time at subsequent WESS stations as
each station is encountered. Train weight, direction, and identification code
would be entered by the dispatcher at the commencement of the journey.

With the above inputs the microprocessor will be able to compute the
optimum demand from the utility tie-in to ensure that the flywheel is at the
necessary speed for energy to be provided to an ascending train without
incurring an unnecessarily high demand peak. If the flywhee! is predicted to
be at too high a speed to accept all the energy available from a descending
train, then one of fwo actions will be taken. [|f the utility is receptive,
energy could be refturned to the utility (even if no credit is received). The
second option is tTo accept that the locomotive resistor brake and/or air brake
will be required for at least part of the descent.

The first option is preferred but is dependent on utility receptivity.
If the utility is not receptive, a signal will be Tfransmitted to the regener-
ating locomotives as the flywheel approaches full speed. This will enable
the engineer to reduce electrical braking and apply (or increase) air braking.

Wayside flywheel assembly fault indication will be provided as an output
from the microprocessor and will include the following:
Vibration--Accelerometers will be used fo sense vibration levels

and give a warning of impending failure.

0Oil Characteristics--0il pressure and temperature.

0il Pump Status--Main or back-up pump running.

Vacuum--Within specified limits.

Based on the actual time the train leaves the WESS site, the revised
estimated time of arrival at the next site will be calculated based on the train
weight (since the microprocessor has been programmed with the route data) and
fransmitted to the succeeding WESS stations. The cost of this system would be
$6000 per site and approximately $20,000 for the initial programming.

Summary of Impact on Railroad Operations

The deployment of WESS on an operating railroad is expected To have a
minimal effect on existing railiroad operations with the exception of the
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electric helper scenario. The operation of either electric or dual-mode
locomotives over WESS grades can be accomplished with essentially no change
in operating procedures. The system has been structured to minimize crew
training required and to leave train handling techniques unaltered.

For the diesel-electric railroad that is converted to dual-mode, probably
the greatest impact will be in the provision of maintenance facilities,
although this will be minimal. There are three impact areas surrounding the
maintenance function:

° Retraining--As with the introduction of any new equipment, mainte-
nance personnel will require training in fault-finding techniques
and general maintenance requirements.

° Spares holding--Due fto the reduction in fleet size (described later
in this report), the level of diesel spares will be reduced but this
will be offset by the spare equipment required for the electric

traction mode.

. Maintenance Equipment--Existing lifting equipment will be suitable
for the electric traction equipment. A transformer oil test facility,
however, will be required at each major maintenance facility.

A common practice nowadays is the running through of locomotives from one
railroad to another. The concept of the dual-mode locomotive or a newly electri-
fied railroad would reduce the financial incentive to continue this procedure.
Therefore, additiona! work will be required at the classification yards at the
extremities of the WESS and/or fully electrified route to change motive power
that previous!y would have worked through to the train's final destination.

MOTIVE POWER
In this study all calculations and design studies have assumed only
continuous ratings. Advantage is not taken of short-term ratings that could

distort the findings of the study.

Dual-Mode Locomotives

The system concept of a high-voltage ac catenary was shown to be highly
compatible with a dual-mode tocomotive. The background, description, and cost
of modification of an existing diesel-electric locomotive to a dual-mode config-
guration is described in this section. The locomotives selected for the modifi-
fication that will be described are the General Motors Electro-Motive Division
(EMD) models SD40Q or SD40-2, which are the present workhorses of U.S. freight
railroad operations. These modifications have been reviewed with the technical
staff of EMD. Similar modifications can be made with other focomotives such as
Yhe GE mode! C-30.

The concept of dual-mode ftraction equipment is not new since the problem
of interfacing electrified and nonelectrified railroads has existed since the
first electric railway started operation. Normally The problem is one of
economic viability, and the operator is forced to accept the operating restric-
tions of dedicated motive power units. Advancing technology has enabled higher
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power /weight and power/volume ratios to be developed that have resulted in
the increased viability of the dual-mode locomotive and multiple unit.

Usually it is accepted that when on the '"secondary mode," operation will
be at a reduced performance., This will not be the case for the converted
diese! locomotives. It is intended to operate up to the known |imit of the
traction motors when on electric (secondary) mode, rather than be !imited by
the prime mover as is the case for the diese! (primary) mode.

The dual-mode locomotive design is such that the motive power will be
derived from either the diesel engine or the catenary, never both together,
thus avoiding causing distress to the alternator by the introduction of
harmonics.

To establish which existing diesel locomotives should be considered for
modification it was first necessary to determine the population of road
locomotives in the U.S. This is shown in Table 2-7.

It can be seen that by far the most popular road locomotive is the SD40
(and SD40-2, which does not differ significantly as far as this study is
concerned from the basic model). Therefore the major effort in This study
was concentrated on the SD40 locomotive, although cursory checks of the
DD-40-X, SD45, and SD38 showed that those locomotives were also candidates
for the modification.

1. Modification Principles

The basic principle of this modification is to use the existing equip-
ment, modified as necessary, and to provide the minimum of new equipment
compatible with satisfactory operation.

To commence the feasibility study it was first necessary fo determine
the equipment required to achieve the secondary mode. A simplified schematic
is shown in Fiqure 2-17. Current is taken from the catenary via the panto-
graph through a high-voltage circuit breaker incorporating a grounding switch
fo a transformer (protected by a lightning arrestor). The low-voltage output
from the transformer is conditioned in a thyristor converter (phase delay
rectifier) to give irregular pulses of variable-voltage dc. A smoothing
choke is required to reduce the ripple fo a level acceptable to the traction
motors.

Therefore the equipment to be accommodated on the existing locomotive
comprises:

° Roof equipment
Pantograph
Circuit breaker
Grounding switch

Lightning arrester
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TABLE 2-7

U.S. ROAD LOCOMOTIVE POPULATION (1974)

EMD 2500-
SD40 & | to 3000-hp | Other

Railroad DD-40-X | SD45 SD40-2 | Range Locomotives
Atchison, Topeka, & - 254 48 188 87
Santa Fe
Burlington Northern - 220 147 45 319
Baltimore & Ohio - - 234 65 0
Chesapeake & Ohio - 133 51 79
Chicago & NW - 61 53 39 41
Chicago, Milwaukee & - 15 134 1t 41
St. Paul
Seaboard - 45 155 61 198
Illinois Central Gulf - - 122 45 22
MKT - - 61 - 0
Missouri Pacific - - 115 24 25
Norfolk & Western - 134 116 156 176
Conrail - 135 383 187 450
St. Louis - San - - 49 33 44
Francisco
SO0 - - 43 10 10
Southern Pacific - 426 89 182 530
Union Pacific 47 50 244 34 132
Western Pacific 43 19 _20

Total 47 1340 2169 1150 2174
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PANTOGRAPH

GROUND ING
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* EXISTING PROTECTION AND ISOLATION EQUIPMENT NOT SHOWN
Figure 2-17. Secondary Mode Simplified Schematic
° Body~mounted equipment
Transformer
Converter

Smoothing choke

Ze Locomotive Performance

Before equipment sizes could be determined, it was necessary to establish
the performance required from the locomotive. Currently the SD40 locomotive is
limited in the power it can produce by its prime mover, the diesel engine, to
2600 rail horsepower. The tractive effort of the SD40 is limited by its trac-
tion motor (under the cdnditions considered), which has a continuous rating
of 1050 amp. The power available for traction (that is the rail horsepower)
is derived from Figure 2-18 as follows:

Engine output 3100 shaft
horsepower
(shp)

Auxiliaries 40 hp (ref 8)

Alternator loss (4 percent) 122 hp
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Rectifier loss (Z percent) 59 hp

Traction motor assembly loss (10 percent) 288 hp

Power available to rail 2590 rail
horsepower
(rhp)

The published rating of the EMD D77 traction motor (the mofor used in all
the EMD road locomotives) is approximately 720 shp (input), giving a fotal frac-
tTion motor power capability of 4000 rhp. For this study it was considered appro-
priate fo take advantage of fthe surplus fraction motor capability and rate the
locomotive in the secondary mode at 4000 rhp.

The D77 tfraction motor, having been modified To improve heat dissipation
by fitting atuminum conductors, has a continuous current rating of 1050 amp.
From Figure 2-13 it will be seen that the fractive effort available at that cur-
rent is 13,780 Ib. Therefore the secondary mode characteristic is defined and
is shown in Figure 2-19, where it is compared with the existing or primary mode
per formance.

3. Secondary Mode Fquipment

After the desired power rating was established, the next task was to estab-
blish whether the equipment could be located satisfactorily on the locomotive.

a. Roof Equipment

It is proposed that the roof equipment consisting of a pantograph mounted
on standoff insulators, vacuum circuit breaker, grounding switch, lightning

arrestor, and high-tension cable through bushing will be mounted on an
extended cab roof. A typical layout of roof equipment for an electric tocomo-
tive is shown in Figure 2-20. The cab roof will need to be strengthened to

afford protection to the crew in the event of a mishap involving the forcing
down of the pantograph toward the cab area.

b. Body Equipment

There are two potential space envelopes available in the SD40 locomotive
in which The body-mounted equipment (transformer, thyristor converter, and
smoothing choke) may be mounted. Those spaces are in the short front hood
(Figure 2-21) and the compressor compartment (Figure 2-22).

To avoid dilution of the main effort of the study by making detailed design
studies of the various required components, a survey of equipment ratings and
physical sizes was conducted. The following information sources were used:

(a) General Electric E42C--Currently being delivered to fthe Taiwan
Railway Administration (TRA)

{(b) Genera! Motors JMAC--Locomotive designed but never built

(c) GEC Traction 87101--Thyristor locomotive built in 1974 for British
Rail
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Figure 2-20, Electric Locomotive Roof Equipment

Figure 2-21. SD40 Short Hood Compartment
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Figure 2-22. SD40 Compressor Compartment
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(d) GEC Traction (TRA-BB)--Delivery to TRA completed in 1978

(e) British Rail Class 88--Design now available with prototype loco-
motive scheduled for 1980

Transformer sizes are shown in Table 2-8,

TABLE 2~8

TYPICAL TRACTION TRANSFORMER SIZES

General General GEC GEC

Electric | Motors Traction | Traction BR

42C JM4C 87101 (TRA - BB)| Class 88
Power rating 4000 rhp 4000 rhpl 65601 rhp | 3000 rhp 5550 rhp
Iaput voltage 25 kv 25 kv 25 kv 25 kv 25 kv
Catenary frequency| 60 Hz 50 Hz 50 Hz 60 Hz 50 Hz
Height 58 in. 54 in. 75 in. 64 in. 43 in.
Width 48 in. 48 in. 43 in. 36 in. 60 in.
Length 64 in. 108 in. 75 in. 56 in. 74 in.
Volume 116 cu £+ | 195 cu f+{ 140 cu ft |75 cu ft 110 cu ft
No. of secondaries 6 + 2 6+ 2 4+ 2 4 + 2 4 + 2

The number of secondaries in Tahle 2-8 refers to the number of ftraction
and auxiliary windings. Therefore 6 + 2 refers to 6 traction secondaries
and 2 auxiliary secondaries.

The space available in the short hood section is 54 (H) by 48 (L) by
72 in. (W). The data gathered showed that this space would not be sufficient;
however, it is possible to extend the length of the short hood an additional
12 in. to accommodate the transformer without causing an obstruction (see
Figure 2-23),

The inspection of Table 2-8 was made against the background that certain
fundamental relations exist between the kva ratings of Transformers and
Their physical size and performance; for example, larger transformers are
inherently more efficient than smaller units. To simplify the problem of
deriving the relations, the following assumptions were made:
Constant physical proportions

Constant current density in the copper

Constant flux density in the iron
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Figure 2-23. Short Hood of SD40 Locomotive
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Because in practica! designs these factors are only approximately constant
over a limited range, actual transformers follow these relations only approxi-
mately. Where the difference in kva rating is not too great, the relations
are sufficiently accurate for estimating purposes. These relationships are
shown graphically in Fiqure 2-24., Furthermore the transformer decreases in
volume approximately in proportion to the frequencies at which it is designed
to operate, within the 50- to 60-Hz variation under consideration.,

Consideration of Table 2-8 and Figure 2-24 led to the conclusion that
the dual-mode locomotive transformer could be housed in a volume 54 (H) by
60 (L) by 60 in. (W) giving a ftotal!l volume of 112 cu ft. This conclusion
was reinforced when, as described later in this section, the decision was
made to have ftwo secondary traction windings and one secondary auxiliary
winding on the fransformer.

The thyristor converter size was based on the General Electric E60C
locomotive, since this is the only locomotive for which size information
was readily available. The E60C converter has a total volume of 56 (H) by
12 (W) by 48 in. (L) to give 12.5 cu ft. AiResearch determined that in the
compressor compartment of the SD40 a space 48 (H) by 72 (W) by 12 in. (L)
(giving a volume of 24 cu ft) was available.

The sizes of smoothing chokes currently in use are given in Table 2-9,

TABLE 2-9

TYPICAL SMOOTHING CHOKE SIZES

General General

Electric Motors

£42C JMAC
Power rating 400 hp 4000 hp
Input voltage 25 kv 25 kv
Catenary frequency 60 Hz 50 Hz
Height 32 in. 34 in.
Width 32 in. 48 in.
Lenygth 102 in. 108 in.
Volume 60 cu ft 102 cu ft

AiResearch determined that in the compressor compartment of the SD40, a
space 48 (H) by 72 (W) by 46 in. (L) (giving a volume of 92 cu ft) was available.
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[t should be remembered when comparing sizes of equipment for a given
power rating that the generous width of the U.S. gage does not normally impose
serious constraints on equipment size, and therefore it is probable that equip-
ment sizes may be reduced further from those given for the dual-mode locomotive
following a concerted design effort.

4, Power Circuit

A simplified power schematic was shown in Figure 2-17. The dual-mode
locomotive has a full regenerative capability in the secondary mode, which
necessitates the use of a fully controlled thyristor converter bridge (see
Figure 2-1), whereas a nonregenerative thyristor-controllied locomotive requires
a half-confrolled bridge. The usual fully controlled bridge configuration
suffers from the distinct disadvantage of having to operate at a very poor
power factor due to the fact that there is no freewheeling path to ensure
device commutation. The AiResearch circuit overcomes this inherent disadvantage
by continuously gating thyristors T3, T4, T7, and T8 of Figure 2-17 when oper-
ating in the propulsion mode and therefore providing the necessary freewheeling
path.

The simple transformer/converter arrangement chosen enables the volume
occupied by those components to be minimized. Full control of each individual
axle is maintained by the use of separately excited traction motors.

In the braking mode, it is essential to have a continuous path for the
braking current; however, the pantograph does not maintain continuous contact
with the catenary. Pantograph bounce occurs even at the relatively fow
speeds under consideration (maximum 70 mph). [t is also necessary to have an
instantaneously available alternate path for the braking current in the event
of the wayside flywheel reaching maximum speed and no longer being receptive.
These requirements are achieved by use of the stabilizing resistor circuit
shown in The schematic of Figure 2-17. In the event of pantograph bounce or
nonreceptivity, thyristor T9 is gated and energy is dissipated in the existing
dynamic brake resistor. Since the traction motors are separately excited,
field control eliminates the need for the extended range dynamic brake feature.
During pantograph bounce, the T9 thyristor may be gated for up tTo an hour.
This blending feature is an extension of the Garrett chopper circuit (see
Figure 2-25) technology developed and proved for use on transit cars.

5. Traction Motors

Because all motors are controlled by a single tThyristor converter, this
configuration does not provide the flexibility desirable in the event of a fault
developing or wheel spin unless a separately excited motor configuration is
adopted. The decision to adopt the separately excited motor configuration
was a tradeoff based on the need to minimize the fransformer size. While
separately excited motors have advantages over the series field machine, there
are serious risk areas that must be addressed and accommodated in the circuit
design and analysis.

The series field machine is inherently self-protecting in the event of

a flashover. The field provides inductance in the faulty motor leg to [imit
the rate of rise of current while the protection equipment is operating. The
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Figure 25. Simplified Schematic of Chopper, Brake Mode

separately excited machine has no such inherent protection but an anaiysis

of the circuit design shows that in a flashover condition in electric brake
(which is the most likely case), the current build-up will result in an increase
in the braking effort, and eventually wheel slide. At this point the machine
acts as a constant current generator and the fault current is limited at a high,
but not massive, value. At flashover detection, all traction motor fields are
forced down so that within 100 msec, the fault current is cleared. Once the
motor isolation contactors have operated on the affected motor, the fields

can be immediately reestablished on the other motors and propulsion or

braking effort is restored on five out of six motors.

The series field machine is the simplest machine configuration avail-
able, relying on the applied voltage to overcome the armature back emf and
supply current that is used to provide magnetic flux and torgue. There are
two mechanisms by which the field strength can deviate from the designed
value for a given armature current:

(a) Field winding shorted
(b) Field weakening fault (contactor welded)
For the separately excited machine, it is still possible to have the
field winding short as in the case of the series machine but the possibility of

the field control malfunctioning is increased by shear component count of the
power supplies required to control +the fields.
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A decision as to whether to use separately excited or series field machines
can only be made following an in-depth analysis of the duai mode tocomotive

6. Weight Transfer Compensation

If individua! axle contro! is provided, this will enable the tfractive effort
applied at each axle to be matched to the dynamic axle load. Typical weight
transfer characteristics of a C~-C locomotive are shown in Figure 2-26.

DIRECTION OF .
MOTION

<

Co =

Lo LT

-8% ~6% + 4% -1h% +6%, +8%

Figure 2-26. Typica! Weight Transfer Characteristics of a C~-C Locomotive

Currently all railroads contacted (with the exception of Conrail) dispatch
their locomotives on the hasis of 20-percent adhesion (see para. 4, "Railroad
Dispatching Policy", at the end of this section). The adhesion value used is
defined as

Locomotive gross weight
Number of axles

No account is Taken of the reduction in axle load due to truck dynamics.
Considering a locomotive of total weight W with the weight fransfer

characteristics shown in Figure 2-26, which has a tractive effort of
T per axle operating at the 20-percent adhesion level defined above:

Effective umax = 0.86

W
6

where H max = coefficient of fricticn at lightest axle.
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Therefore, without increasing the maximum effective adhesion levei, the
tractive effort for the dual mode locomotive becomes

axle 6 T
2: 0.86 W X dynamic axle load
6

=

axle 1
= T 0.92 W 0.94 W 1.14 W 0.86 W 1.06 W 1.08
0.86 W 6% 6 *t 6% 6t 6 *
6
= 6T
0-86 = 6-977T

Therefore, increase in available tractive effort per locomotive

1l

6.977T - 6T

i

0.977T
Therefore, for the SD40 based dual-mode locomotive with separately
excited motors, the tractive effort available for the same adhesion level may

be increased by 16 percent compared with the standard locomotive.

7. Locomotive Reliability

The circuit configuration used for the electric mode is not that which
would normally be chosen for a road locomotive, since if a fault occurs on the
converter, power will be lost to all motors. Normal practice is to provide
at least two independent power circuits so that in the event of a fault a
minimum of 50 percent power is maintained; however, since in the event of an
electric mode failure the diesel engine is available to provide power (albeit
reduced), this fradeoff against equipment size is considered satisfactory.

8. Duai-Mode Conversion Cost

A statement of work has been prepared for the modification of the SD40
and 5D40-2 locomotives to dual mode, and is attached as Appendix A. Based
on this statement of work a cost estimate has been prepared and is attached
as Appendix B. This shows that the fotal cost for a railroad to carry out
the modification would be $211,000.

Electric Locomotives

The electric locomotive considered for use in the WESS study was a regen-
erative version of the GE Model E60, which is the only recently designed elec~
tric locomotive in regular service in the U.S., as shown in Figure 2-27. The
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F-27336

Figure 2-27. General Electric E60C Locomotive in Service
at Black Mesa and Lake Powel!

essential change to the E60 locomotive for the WESS application is the substi-
fution of thyristors for the diodes in the lower arms of fthe six individual
semiconverters that power the six fraction motors. This change permits the
converter to operate as a |ine-commutated inverter during electric braking
operation, thereby coup!ing power back info the ac catenary.

The cost of regenerative elecfric locomotives similar to the modified GE
E60 has been obtained from two sources. The first is the A. D. Little projec-
tion of $180 per rail horsepower in 1976, which should be escalated to $191
per rail horsepower with 10 percent added for modification to provide regen-
erative capability for 1977. This results in an estimated cost of $1,071,000
for a 5100-rhp locomotive. The second source used for the cost of an E60 is
based on the most recent purchase of these locomotives. In 1976, Black Mesa
and Lake Powe!ll Railroad purchased three E60 units for $750,000 each. With
adjustment for inflation, today's cost should be about $795,000. The cost
of modifying new E60 locomotives as described above was reviewed with the GE
Locomotive Department. The estimated cost for this modification is 10 percent
of new cost, resulting in a regenerative locomotive cost of $875,000.

In keeping with the conservative approach used by AiResearch in the WESS

econonic analysis, the higher cost of $1,071,000 suygested by A. D. Little was
used for regenerative electric loconotives.
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No change is proposed fo the locomotive performance in the propulsion
or resistor braking modes. The proposed regenerative braking characteristic
is shown in Figure 2-28, where the limitation on the existing braking effort
imposed by the resistor grids is removed.

Locomotive Fleet Size

Before the benefit of a reduction in fleet size could be quantified, it
was first necessary to establish the size of the existing locomotive fleet
required to operate a particular route with a known ftraftic level. Initially
an attempt was made to get the information from the cooperating railroads,
but it was found that the determination of this information would take more
resources than the railroads were able to commit. Therefore to establish
fleet size it was necessary to resort fo statistical data. The Federal
Railroad Administration provided the following statistics for locomotive
use in U.S. (ref 5):

Min. Max . Average

Electric locomotives/1,000 MGTM*/year 1.94 4,22 3.6

Diesel locomotives/1,000 MGTM/year 2.80 9.90 6.8

The routes to be considered later in this report are representative of
the most efficient railroad operations in the U.S. and, therefore, it would be
expected that the locomotive utilization would be above the average; that is,
in the case of the diese! locomotive where, for the U.S. on the average, 680
locomotives are required fo move 103 MGTM/year, the more efficient routes
probably require only 400 to 450 locomotives for the same freight movement.
Since the basis for this projection could not be quantified, however, the
average locomotive use figures of 6.8 (diesel) and 3.6 (elecfric) have been
used in this study, Thereby presenting a conservative approach to The
economics study.

After the fleet size for The existing railroad was established, it was
possible to determine the number of locomotives required for the modified

railroad.

1. Dual-Mode Locomotive Railroad

Consider a typical 4600 frailing ton train required to travel at 60 mph
on level track with diesel power and fo negotiate a 2.2 percent grade at
20 mph under electric power. This will be compared with a conventional SD40
per forming the same duty using only diesel power. Since the SD40 is ballasted
fo the maximum permissible axle load (fotal locomotive weight 205 ton) it is
assumed that the dual-mode version weighs the same as the standard locomotive.

From Fiqure 2-29 it can be seen that it requires three locomotives to
achieve 60 mph on level track,

To ascend a 2.7 percent grade at 20 mph requires either six SD40 focomotives
as shown in Figure 2-30 or four dual-mode !ocomotives as shown in Figqure 2-30.

*MGTM: millions of gross ton miles
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Thus, the benefit of using a dual-mode locomotive is considerable. |t
must be recognized that a utility tie-in is necessary fo take advantage of
this saving since if the electrical capability could not be guaranteed, the
diesel capability would- still be required.

2. Electric Helper Railroad

The number of locomotives saved in the case of the electric locomotive
hauling the diesel locomotives and consist up the grade is reduced since the
electric locomotive has to haul the dead weight of the diesel locomotives
(as the diesels do not contribute to the train tractive effort, thus saving
the maximum amount of diesel fuel).

3. Electric Railroad

The introduction of WESS to the electric railroad does not impact the
fleet size.

4. Rajlroad Dispatching Policy

The savings in locomotives referred to above in the dual-mode and
electric helper cases are directly dependent on the railroad dispatching policy.
In the example, it was assumed that the consist was required fo achieve a speed
of 20 mph on the ruling grade and 60 mph on level track. When the criteria
had been established for determining the number of locomotives required for
a given train, some of the cooperating railroads supplied the information
shown in Table 2-10.

TABLE 2-10

RATLROAD DISPATCHING POLICY

Minimum Speed on Ruling Grade, mph

Adhesion
Level,

Railroad Drag | Medium~Speed Service | High-Speed Service | percent
AT&SF 12.5 17.5 20 20
Conrail 11 11 20 18
Southern " 20 25 20
Union Pacific 15 20 25 20

The saving in locomotives was computed for each railroad based on their
dispatching policy. The crucial factor is the tractive effort available at
the minimum speed required on the ruling grades.

2-59



1f all the grades are electrified and therefore negotiated in the electric
mode, then the governing criterion for the number of locomotives becomes the
minimum speed required on l!evel track., Therefore, there is a minimum number
of grades that may be electrified on each route and still allow the full loco-
motive saving to be legitimately claimed. This point is reached where, in
the diesel mode, the number of locomotives required to negotiate the remaining
nonelectrified ruling grade is less than or equal to the number of locomotives
required on level track.

A similar argument applies to the electric helper scenarios.

For the purpose of this study it was assumed that for the dual-mode
locomotive scenario, the locomotive fleet could be reduced by the ratio of
tractive efforts available in the primary and secondary modes at the minimum
speed required for a medium-speed train to ascend the ruling grade. For
example, in the case of AT&SF where the minimum speed on the ruling grade
for a medium-speed train is 17.5 mph (from Table 2-10), the tractive effort
in the primary mode at 17.5 mph is 45,000 tb and in the secondary mode is
83,000 Ib. Therefore the fleet may be reduced in size from N locomotives to
0.54 N. Since the value of N used in the study is conservative, the remain-
ing locomotives requiring modification will also be conservative; however,
since railroads can and do take advantage of short-term ratings of electrical
equipment, the full credit in ferms of locomotives saved is not allowed in
the study. This adds yet another conservative element to the study.
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SECTION 3

WESS APPLICATION TO INDIVIDUAL GRADES

LOCATION STUDY (ITEM 1)

Methodo fogy

A search for favorable locations within the U.S. where railroad energy
storage installations would be both feasible and beneficial was conducted at
an early stage of the study. AiResearch was constrained by the contract state-
ment of work not to involve more than "...nine railroad companies or other
elements of the general public".

The methodology used to conduct the location study (Figure 3-1) comprises
five distinct phases:

(a) Preliminary calculations

(b) Data acquisition

(c) ldentification of prime candidate grades
(d)} Individual! grade ranking

(e) ldentification of WESS routes

Preliminary Calculations

Refore approaching railroads, it was necessary to understand the scale of
the systems under consideration and to decide the necessary magnitude of the
variables. Such variables as change in elevation, length of grade, weight,
and number of tfrains had to be allotted minimum values in order to be able to
define to the railroads the information required. |t became clear that there
was no minimum value for each variable because a high traffic level could, for
instance, counteract a small elevation change (as was later seen to be the
case on the Harrisburg-Pjittsburgh route); however, system costs and savings
are dependent on the scenario adopted and it was necessary from the outset o
assume what was later to be termed the "electric helper" scenario in order to
get the preliminary calculations under way.

Consider the general case where a frain of weight W fon is descending a
grade of length (L) miles with a change in elevation of h feet., |t is assumed
for this preliminary calculation only that the tfrain arrives at the grade at
the descent speed (v) mph/hr, which is taken to be constant. Neglecting the
effect of curvature (which is generally of second-order importance) and aero-
dynamic drag (which is negligible at the typical ascent and descent speeds
being considered), train resistance may be expressed as a constant wr , where
r is the specific rolling resistance in Ib/ton. 2000

The above may be represented diagrammatically, as shown in Figure 3-2.
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Figure 3-1. Location Study Methodology




v
—

wre—1[] ~
PN

I

h

Figure 3-2. Diagrammatic Representation for Energy Calculations

Then, change in potential energy = Wh ft-ib

= 3,77 x 1077 kwhr

Energy consumed by train resistance = WrL ft-ib

9.94 x 10~7 kwhr

.*« Energy available at the wheel of the descending train

change in potential energy - energy consumed by Train resistance

i

(3.77 x 1077 Wh ~ 9.94 x 107 WrL) kwhr

3.77 W(h -~ 2.64 rL)Y10"7 kwhr

Assuming that the train resistance has the constant value of 3.8 ib/ton,
Energy saving at the wheel of the descending train = 3.77 W(h - 10L) 1077

From Figure 3-3, it will be seen that the overall round trip efficiency of

the WESS.system is 60 percent. Therefore, energy saving at the wheel of the

ascending train

0.60 x 3.77 W(h - 10L) 1077 kwhr

2.22 W(h - 10L)10™7 kwhr

t

Annual energy saving = (energy saved/ascending train) x number of frains/year

= 2,22 Wh - 1001077 x T kwhr
=
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where T = annual fraffic density in the direction
under consideration (gross trailing tons)

G = average gross trailing ton/train

Assuming an energy content/gal of diesel fuel at 52 hphr (38.8 kwhr) and
from Figure 3-4, a diesel locomotive efficiency of 25.2 percent

Energy saving = 2.22 WT (h - 1oLy1077 gal of fuel
0.252 x 38.8 G

Assuming a 30~year [ife and discounting at 10 percent, the net present value
(NPV) of this annual saving

1]

(discount factor x fuel cost/galion x energy saving) dollars

9.427 x 0.38 x 0.227 WT (h - 10)1077 dollars
c

NPV

n

[0.813 W (h - 10L)1o"3] $ million
G

The initial investment required to realize the annual saving consists of
the following three major elements:

Electrification--The cost of electrification is approximately
proportional to the frack tength (L miles) and number of tracks
n. An electrification cost of $0.15 million was assumed at this
stage of the study. More accurate figures were used in the engi-
neering economics analysis later in the study.

Slugs--For the purpose of this preliminary analysis, it was
assumed that the cost of motive power modifications and provi-
sion of slugs would be offset by the savings in locomotives
previously referenced in Section 2 of this volume.

Flywheel--The flywhee!l was initially estimated to cost $0.33 million/
Mwhr, a more detailed analysis not being available at this stage.

Initial Investment (!1IN) is then

0.15 n L + 1.0 x nL + 2.22 W (h = 10L) 1077 x 0.330
0 N 103

where M = system efficiency from wheel to flywheel = 0.77 from
Figure 3-3.

L lIN =S [0.15 b +0.951 W(h ~ 100 10“0} M
2



FUEL
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97 PERCENT 32 PERCENT 92 PERCENT 98 PERCENT 90 PERCENT
= OVERALL EFFICIENCY 25.2 PERCENT

Figure 3-4. ODlesel Locomotive Efficiency

Atthough it was derived in a crude manner, having made many assumptions that
at the time couid not be validated, there now existed a simple method of
assessing the relative merit of the grades being considered. AiResearch took
the view for this initial approach that if the NPV of the annual savings at
least equalled the initial investment, then the grade was worth investigating
turther. This was particularly true since it was known that the motive power
costs were overestimated.

.*. for candidacy NPV = [IN
.+. 0.813 W (h - T0L) 10713 = 0,15 aL + 0.951 W (h - 10L) 10-10
G
Assuming an average train size of 4600 gross trailing tons with an associated
train weight of 5010 tons and dividing both sides of the above equation by L,

we have

0.813 x 5010 x 2000 x T {h - 10} 10-13
4600 L

= 0.15n + 0.951 x 5010 x 2000 (g_ - 10) 10-10
L

1764 T(52.8p - 10)10=13 = 0.150 + 0.953 (52.8p - 10) x 10=3



where p = grade in percent, e.g., 1.4

«*s T =0.15n + 0.953 (52.8p - 10) x 10"3  for economic viability at
1764 (52.8p - 10) 10~13 the preliminary stage

where T = traffic density (gross trailing ton/year)
n = number of tracks
p = grade in percent
Then the solution to this equation shows typically the traffic density required

for viable WESS installations on various track configurations and grade com-
binations. The solutions are shown in the curve of Figure 3-5.
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Figure 3-5. Relationship Between Traffic Density and
Grade for Initial WESS Candidacy

Clearly, a finite amount of energy must be recovered to make the system
viable and to place practical constraints on this theoretical approach.
Initially, AiResearch regarded 600 kwhr as the minimum amcunt of energy that
should be available at the wheel of the ascending train for deployment of
a WESS. Therefore, from equation 1:

Energy saved = 2.22 W(h - 10L) 1077 = 600 kwhr

. 2,22 Wh( - IO)IO'7=6OO
52.8p



if W= 5010 ton as before

2.22 x 5010 x 2000 x h (1 = 10 )10~7 = 600
52.8p
«*h = 270  for realistic energy savings at this
(1 -10 preliminary stage.
52.8p
where h = elevation change (f1)

]

p grade (percent)

The solution to this equation is shown in the curve of Figure 3-6.
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Figure 3-6. Relationship Between Elevation Change and
Grade for Minimum Specified Energy Saving

The simplified approaches used above were solely for the purpose of
identification of individuai grades and were not used in the study for any
other purpose. Calculations of energy savings were made using the AiResearch
TPC, specially developed for the purpose, which treats all the variables in a
technically correct manner.
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Based on these preliminary data, AiResearch established that, in generat,
elevation changes in excess of 300 ft at a rate of 1.5 percent, with an annual
traffic density at 20 x 108 ton would be of specific interest with regard to
the application of WESS.

Data Acquisition

At the request of AiResearch, six railroads were approached by TSC. The
following six railroads were approached by TSC:

Southern Pacific Transportation Company (SP)

Union Pacific Railroad (UP)

Southern Railway (SR)

Consolidated Rail Corporation (Conrail)

Atchison, Topeka, and Santa Fe Railway Company (AT&SF)

Bur |l ington Northern (BN)
In their responses, AT&SF and BN declined to participate because of the heavy
workload of their engineering staffs; however, a series of meetings was arranged
with the other railroads. An informal approach was made to Duluth, Missabe,
and |ron Range Railroad with the railroad agreeing to participate. The final
meeting in the series took place on August 11, 1977.

Each grade was allotted a grade index number (GIN) from initial information

on traffic density and grades. The preliminary calculations were used as a
primary screening process to reduce the number of grades fo be considered
to manageablie proportions as follows:

SP - 4 grades

UP - 9 grades

SR - 1 grade

DMIR - 1 grade

Conrail - 1 grade

The data collected for the prime candidate grades are shown in Appendix C.

For each ygrade, a location map identifies the grade in relation to the nearest

state or infernational borders. The grade data are shown on a separate sheet
and include:
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° Track profile (distance and elevation)

® Track configuration

e Annual fraffic level (tonnage includes locomotives and was escalated
from 1976 data--SP data 1977)

° Speed limits

The location study, as originally strucftured, was infended fo cover approx-
imately 50 percent of the major routes in the United States (see map of Figure
3-7) with approximately 80 percent of the Western Railrocads covered. This was
because these railroads consume 50 percent of the fuel used for rail fraction.
Clearly, the inability of BN and AT&SF fo participate was a serious blow to the
proposed comprehensive coverage.

Information was also obtained from the Denver & Rio Grande Western Railroad,
Black Mesa and Lake Powell Railroad, and Transport Canada. The primary screening
process then was applied fo the U.S. grades identified during this indirect
approach to the railroads and further primary candidate grades were identified
as follows:

AT&SF - 10 grades
BN - 4 grades
DARGW - 2 grades
BMLP - 2 grades
The data collected for these further prime candidate grades are included
in Appendix C. |1 should be noted here that AT&SF subsequently agreed to

cooperate in This study and have provided much valuable information.

Ranking Individual Grades

Having established the existence of 34 prime candidate grades on U.S.
railroads, it was necessary to rank these grades in order of merit as directed
by the contfract statement of work. To meet this requirement, AiResearch pre-
sented a list of the 10 most attractive grades, based on the best information
available at the time. This was done to remove the dependence on a particular
operating scenario. Ignoring the motive power costs, it is shown that the
costs and benefits of operating a particular grade are related as follows:

Cost of electrification is proportional to length of grade
(L) and number of fracks (n).

Flywhee! costs, and therefore capacity, are proportional to
elevation change (h).
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Energy savings are proportional to elevation change (h) and
traffic density (T).

Therefore, the benefit-to-cost ratio of WESS grades may be
expressed as being proportional!l to

_TIh
nL + h

Using this method, the benefit/cost ratio was derived for each grade and a list
of the primary candidate grades with their ranking factor is shown in Table 3-1.
It will be seen that the most attractive trades identified by this method

were between Cheyenne and Laramie on the UP mainline, and between Harrisburg

and Pittsburgh on the Conrail line.

The two grades on BMLP could not be evaluated in this manner since it is
already electrified; also, the low cost of energy to that railroad further
distorts the ranking; however, subjectively it appeared that with the com-
bination of large elevation change and electrification already existing, these
grades must be extremely attractive.

Identification of Wess Routes

The 34 prime candidate grades were displayed on a map of U.S. railroads,
Figure 3-8, and were compared with a possible U.S. electrified network. It
was noted that, with the exception of three grades, the prime candidate grades
are located on routes considered to have electrification potentiat. This is
hardly surprising since both WESS and etectfrification require a high traffic
density To be economically viable.

The routes with WESS potential (i.e., routes with many WESS prime candidate
grades between major classification yards) were identified and classified by
characteristics such as high speed medium traffic, medium speed high ftraffic,
etc. The ten routes are:

Los Angeles-Belen (AT&SF)

Los Angeles~Salt Lake City (UP)
Pocatel lo~Council Bluffs (UP)
Pocatel lo=FPortland (UP)
Sacramento-0Ogden (SP)
Sacramento-~-Portland (SP)

lLlos Angeles-El Paso (SP)

Denver-Salt Lake City (D&RGW)
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TABLE 3-~1

WESS PRIME CANDIDATE GRADES

Grade Ranking
Index Ratiroad Identification Factor
No.
035 Union Pacific Baker - Weatherby 32.4
036 Union Pacific Union Junction - Powder River 69.7
037 Union Pacific La Grande - Duncan 32.88
056 Union Pacific Cheyenne - Laramie 112.75
061 Union Pacific Echo - Wahsatch 57.5
063 Union Pacific Orr - Milepost 40 43.8
088 Union Pacific Elgin - Crestline 27.8
089 Union Pacific Borax - Las Vegas 27.12
090 Union Pacific Kelso -~ Nipton 27 .46
121 Southern Braswel | Mountain 37.4
145 OM& IR Duluth 33.8
175 Southern Pacific Cascades (South) 41.2
176 Southern Pacific Cascades (North} 39.7
183 Southern Pacific Sierras (Roseville - Sparks) 41.6
195 Southern Pacific Colton - Indio 58.C
202 Denver & Rio Grande Western Helper - Springville 34.1
208 Denver & Rio Grande Western Cenver - Granby 30.6
220 Burlington Northern Wenatchie - Skykomish *
222 Bur | ington Northern Easton - Auburn *
226 Burfington Northern Garrison - Missoula *
227 Buriington Northern De Smet - Dixon *
230 Consclidated Rai! Corp. Harrisburg ~ FFittsburgh 10.8
240 Atchison Topeka & Sante fe San Bernardino - Victorville 69.5
242 Atchison Topeka & Santa Fe Needles - Goffs 50.7
243 Atchison Topeka & Santa Fe Flagstaff - Canyon Diablo 50.3
244 Atchison Topeka & Santa Fe Bellemont - Flagstaff 50.2
246 Atchison Topeka & Santa fe Eagle Nest ~ Williams Junction 55.8
247 Atchison Topeka & Santa Fe Hackberry - Pica 56.1
248 Atchison Topeks & Santa Fe Topock =~ Kingman g 56.3
251 Atchison Topeka & Santa Fe Galtup - Belen 54.3
252 Atchison Topeka & Santa fe Belen - Sitio 29.1
255 Atchison Topeka & Santa Fe Vaughn - Fort Sumner 56.9
261(a) Black Mesa & Lake Powel | Page ~ Milepost 31
(b} Black Mesa & Lake Powell Milepost 44 - Kayenta '

*Treffic data not available

+The ranking technique cannot be applied to BM & LP since the railroad is electrified
and this distorts the rankings. This is because the simplistic approach adopted
is only valid when comparing similar (in this case diesel) railroads.
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Harrisburg-Pittsburgh (Conrail)
Page-Kayenta (BM & LP)
These routes are shown in Figure 3-9.

The routes operated by railroads who had indicated they did not wish To be
involved in the study were deleted and four representative routes then were chosen
for detailed analysis. The routes chosen were:

° Los Angeles ~ Belen--This route is part of the major Santa Fe
artery between Chicago and Los Angeles and currently has a
traffic density of approximately 50 x 106 GTT/year. The traffic
is virtually all operated as high-speed manifest with typically
a 2.6 hp/ton power/weight ratio.

This route is classified in this report as a high-speed, high-
traffic route.

[ ] Los Angeles - Salt Lake City-~Although this route is not associated
with the high fraffic routes of Union Pacific it is UP's only link
between the Pacific Northwest, the Great Plains, and Los Angeles.

It currently has a traffic density of approximately 39 x 10 GTT/year.
The traffic consists of a mixture of high-speed manifest (4 hp/ton),
medium speed (2.5 hp/ton), and drag (1.2 hp/ton).

Harrisburg - Pittsburgh~-This route is Conrail's major link to the
East Coast from The heavy industry of Pennsylvania and currently
has a traffic density of approximately 112 x 100 GTT/year. A
large proportion of the traffic consists of heavy coal and ore
unit frains.

Black Mesa and Lake Powell--This coal-hauling railrecad is electrified
at 50 kv, 60 Hz and has a total traffic density of 21.2 X 100 GTT/year.
Trains are made up of three E60C locomotives hauling 70 coal cars of
120~ton capacity.

The AiResearch train performance calculator (TPC) for this analysis used
the route characteristics (grade, mileposts, curvature, speed restriction)
available from track charts supplied by TSC. The output from the program was
the identification of all sections of potential regeneration, a task impossible
to undertake manually before the systems analysis had produced realistic operating
scenarios. A detailed description is contained in Section 5 of this report.

The end result was the identification of many more candidate grades on
the four representative routes, as shown in Table 3-2.

On the basis of this information, AiResearch recommended to TSC that the
original intention to consider individual grades should be disregarded in
favor of consideration of complete routes between major classification yards,
thus enabling all costs and system design to be considered on a total system
basis. TSC concurred with this request.
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TABLE 3-2

NUMBER OF ADDITIONAL CANDIDATE
SITES DERIVED FROM USE OF TPC

Primary Total Grades
Candidate identified by
Route Grades T°C
Los Angeles-Belen 6 18
Los Angeles-Salt Lake City 4 10
Harrisburg-Pittsburgh 1 3
Page~Kayenta 2 2

Location Study Qutput

As a result of the location study, AiResearch has identified 34 prime
candidate grades and ten routes with WESS potential; however, AiResearch
does not claim that the location study was 100 percent complete as far as
identification of all major grades was concerned, because the contract state-
ment of work limited the contacts fo not more than nine railroads. Other prime
contact candidate grades and WESS routes no doubt exist on other railroads,
but these remain unidentified by this analysis; however, this location study
encompassed as many railroads as possible that had high traffic densities and
that were located in mountainous terrain.

The preliminary calculations identified the range of flywheel sizes and
power rating required to be compatible with tThe WESS system. Table 3-3 shows
the flywheel size for the 10 most attractive grades. This range of sizes was
later confirmed by the TPC.

FLYWHEEL STATION STUDY (ITEM &)

On the basis of the energy calculations made for the individual grades,
the sizing of the flywheels required for energy recuperation was determined.
A design study then was conducted, which resulfed in the definition of a typical
flywhee!l station in sufficient detail To support the preparation of cost
estimates.

Fiywheel Sizing

The first determination was the flywheel energy storage capacity for a
tTypical wayside station. The flywheel to be used for recuperation of braking
energy in the WESS system was sized by examining the energy storage require-
ments from a single train on typical grades. A set of data showing the energy
storage requirements for the 10 most attractive grades was shown in Table 3-3.



TABLE 3-3

ENERGY REQUIREMENTS FOR THE TEN MOST ATTRACTIVE GRADES

Grade
Index Energy Storage from Flywheel
No. Railroad Single Train, Mwhr Capacity, Mwhr
056 w 4.9 9.8
175 SP 10.5 21.0
195 SP 6.4 12.81
206 DRGW 9.6 19.2
230 Conrail 3.0 6.0
240 ATSF/UP 6.9 13.8
242 ATSF 5.3 10.6
248 ATSF 2.7 5.4
261(a) BM & LP

It also was assumed that on the intensively used routes under consideration
there generally will be an ascending train faking at least part of the regen-
erated energy from a descending train. Therefore, the flywheel generally would
not be required to take more than the energy resulting from the descent of
more than two trains.

Then, using the baseiine assumption that the flywheel should be capable
of storing the energy from two trains for subsequent reuse by ascending trains,
it can be seen that flywheel capacities range from 21.0 through 5.4 Mwhr. These
values appear to be representative of the requirements for all WESS sites
considered.

Thus, it was assumed that a flywheel of 5.5-Mwhr storage capability would
be a typical size for cost-estimating purposes (multipie flywheel installations
used where required), although in practice each flywheel would be sized to its
specific grade application.

The power required of the flywheel station determines the capacity of
the electric machine that couples energy into and out of the flywheel.
Required power was found Yo vary from 4 to 11.6 Mw for the 34 prime candidate
grades. On this basis, the assumption was made that the flywheel machine
must have a 1-hr capacity of 7.5 Mw operating over the usable flywheel speed
range. Again, the flywheel machine used in each WESS installation would be
slzed for that particular requirement.

The typical flywheel system storage capacity of 5.5 Mwhr and power rating
of 7.5 Mw were used to determine the cost per kwhr of the flywheel assembly
and the cost per kw of the flywheel machine and converter. These values then
were used to determine the cost estimates of the wayside stations for each
grade considered in the study.



Large Flywheels

The use of large flywheels for energy storage is not a new concept. AT
least three recent applications of large flywheels are known. The character-
istics of these fliywheel systems are shown in Table 3-4.

The Navy catapult system has been used on aircraft carriers to launch
aircraft. This flywheel rotor is a complex steel forging with heavy hubs to
provide the high power level. The catapult flywheel rotor has an energy
density of over 10 w-hr per pound. Both the General Atomic and Tokamak fly=-
wheels described in Table 3-4 are used in nuclear fusion experiments to provide
huge pulses of electric power from generators, of which the flywheels act
as rotors. The energy densities of the nuclear program flywheels are quite
low because their designs are compromised to provide the high pulse power
generating capability.

Based on Table 3-4, it is theoretically possible to combine tThe weight of
the Tokamak rotor with the energy density of the Navy flywheel. The resulting
rotor would have an energy storage capacity at full speed of 10.3 Mwhr. |If

TABLE 3-4

LARGE FLYWHEEL SYSTEMS

Flywheel Power Rotor Rotor Rotor

Capacity, Rating, Weight, Speed, Diameter,
Description Mwhr Mw ton rpm ft
Navy Catapult 0.113 70 5.5 6000 7
General Atomic 0.444 260 200 400 20
Tokamak 1.25 475 500 375 22

this flywhee! then were operated over a 2:1 speed range, its usable capacity

would be 7.7 Mwhr, which would be suitable for many WESS applications.

Because the catapult flywheel design requires expensive forgings, a simpler
design, better suited to the WESS application, was developed.

Flywheel Design

The flywheel for the WESS should have the following characteristics
based on the sizing considerations given above:

Usable energy storage (to 50 percent speed) 5.5 Mwhr
Total energy storage (100 percent speed) 7.33 Mwhr
Power level 10 Mw




Operating life with minimum maintenance 30 years
Vertical installation

Minimum cost

Design speed (100 percent) 1800 to 3600 rpm

Low parasitic losses

Three basic designs were considered in the study, as follows:

All-steel flywheel constructed of axial discs with a peripheral
speed of 1440 fps. :

A composite (fiberglass/epoxy) flywhee! comprised of several

concentric annular cylinders mounted upon an aluminum-spoked
hub.

A hybrid design, which would contain a stee! flywhee! core
surrounded by a mul!tilayer composite cylinder.

The composite flywhee! rings are made using two different filaments
in order to use available materials to the greatest advantage:

(a) The inner rings, up To a rim speed of 2100 fps, are made using
S-glass.

(b) These rings are overlaid with rings made using Kevlar filaments
To a diameter that will produce a rim speed of 2500 fps. The
inside/outside diameter ratio of the combination is 0.8.

The hybrid flywheel shows no real advantage over the all-steel flywheel,
This is primarily because of the following three constraints arbitrarily
imposed on tThis design as analyzed:

The rim speed of the steel portion was reduced from 1440 to 1300
fps to allow for poorer shape factor of the discs in order to
provide for '"spokes" to support the composite overlay.

The composite inner diameter is only 2 percent greater than the
steel disc OD. This configuration reduces the !ength and weight
of the spokes.

The ID/OD ratio of the composite cylinder is 0.8.

{+ is probable fthat with adjustment of the constraints during a complete
desian analysis, a more advantageous hybrid design would evolve.

Each of these designs was considered in both the 1800-rpm and the 3600-
rpm versions; therefore, a tota! of six configurations was considered in the
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design study. These are summarized in Table 3-5. Additional data on fhe
compasite flywheels are shown in Table 3-6., The relative sizes of the three
1800-rpm flywheels and three 3600-rpm flywheels are illustrated in Figure 3-10.

[t immediately becomes apparent from Tables 3-5 and 3-6 That there are
significant advantages in cost and power loss when a composite flywheel is
used; however, the composite design entails greater technical risk and a
more complex installation (greater vacuum requirement). The hybrid design
offers a more compact rotor than the pure composite, and has The additional
advantage of accommodating magnetic fevitation to reduce the hydrostatic
bearing size and losses.

A second comparison of interest is The magnitude of power loss between
the 1800-rpm and the 3600-rpm machines. The weight of the flywheel, for any
configuration, is the same regardless of operating speed. Since the principal
power loss in the flywheel system is the hydrostatic bearing and the bearing
power loss is directly proportional fo speed, The slower flywheel has only about
half the loss of the faster one.

Flywheel Manufacture

The flywheels analyzed in the study are large structures with high rotating
speeds. Any basic design--steel, composite, or hybrid--will involve specia!l
manufacturing techniques and additional facilities. Fabrication of a steel fly-
wheel, however, involves less technical risk than the other designs. Fabrica-
tion of a composite (or hybrid) flywhee!l involves development of several manu-
facturing techniques currently being developed for much smaller units,

Stee! Flywheel Fabrication

In this study, the use of steel discs in flywheels up to 15.25 f+ in
diameter is considered. Several stee! companies were consulted and the
largest material Tthat can be supplied currently in high-grade SAE 4340 steel is
180 in. wide by 4 in. thick, The largest disc that can be heat-treated to the
desired properties is 15.5 fT in diameter. The approximate maximum thickness
that can be hardened uniformly is 3 in. The material given prime considera-
tion for the steel flywheel design was Lukens Steel Company Electroslag Remelt
Processed SAE 4340 steel.

With the above dimensions as |imitations, & seventh flywheel type (no.
7 iri Table 3-5) was defined. In This flywheel, the rotational speed is
adjusted to produce 1440 ft/sec tip speed at 100 percent rpm with a 13.5-ft-
dia. disc. Thus, the no. 7 design is optimized to avoid compromises in energy
density due to the existing material and heat-treating limitations.

Composite flywheel Fabrication

The composite flywheel will be fabricated by assembling a number of axial
composite rim sections to form a flywheel cylinder of the required fength.
Each rim section would be made up of a series of annular rings one upon the
other. FEach one of these rings is wound and cured before the next ring is
applied. This method, which is currently being used To manufacture small fly=-
wheels (up *o 4-ft diameter), would be extrapolated to make the WESS flywheel.
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TABLE 3-5

SUMMARY OF FLYWHEEL CONFIGURATIONS

ial 1800 rpm 3600 rpm 2037 rpm
materia Steel Composite* Hybrid Steel Composite* JHybrid Steel
Type 1 2 3 4 5 6 7
Diameter, ft
Steel 0D 15.28 19.52 13.79 7.64 - 6.895 13.5
Composite ID - 26.53 14.07 - 9.74 7.033 -
Composite 0D - 17.58 - 13.26 8.791 -
Length, ft 13.48 8.714 14.16 53.94 34.84 56.62 17.28
Weight, tons
Steel €04.4 - 516.8 604.4 - 516.8 604 .4
Composite - 133.5 84.4 - 133.5 84.4 -
Total 604.4 133.5 601.2 604.4 133.5 601.2 604.4
Tip Speed ft/sec
Steel 1440 - 1300 1440 - 1300 1440
S-glass - 2300 1657 - 2300 1657 -
Kevlar - 2300 - - 2500 ~ -
Material! Cost, §
Steel at 0.60/tb $ 824,368 - $ 704,886 $824,368 - $704,886 $824,368
S-Glass at $1.90/1b - $ 380,000 320,749 - $380,000( $320,749 -
Kevlar at $4.80/1b - $ 321,600 - - $321,600 - -
Total 824,368 £ 701,600 |$1,029,633 | $824,368 $701,600{ $1,025,635 $824,368
Vacuum requirement, micron 1000 1 10 1000 1 10 10000
Loss at 100-percent speed, kw 120 27 120 240 54 240 136
Polar moment ft-sec? 1,095,343 273,836 855,203

*Composite wheels made of Kevlar and S~glass. See Table 3-6
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TABLE 3-6

SUMMARY OF COMPOSITE CYLINDERS

Type (see Table 3-5)
2 5

Speed, rpm 1800 3600
Material Kevlar S-Glass Keviar S-Glass
Tip speed, ft/sec 2500 2300 2500 2300
Outside diameter, ft 26.53 24.40 13.26 12.20
Inside diameter, ft 24 .40 19.52 12.20 9.75
Length, ft 34.84
Weight, Ib 67,000 200,000 67,000 200,000
Total weight, 1b 267,000 267,000
Total weight, fons 133.5 133.5
Material cost

Kevlar at $4.80/1b $321,600 $321,600

S-Glass at $1.90/1b $380,000 $380,000

Total: $701,600 $701,600

A flywhee! of the size required for the WESS application would require the
construction of a winding facility that would include these items of special
equipment:

A rack to hold the creels of revolving material and the devices
To apply the proper tension to the roving as it leaves the creel.
Probably four creels per winding machine would be used.

An evacuated wet-out box To apply the epoxy resin to the
rovings.

A power-driven spindle, either vertical or horizontal, upon
which To mount the winding mandrel.

Several winding mandrels upon which the layer after layer of
composite material would be wound.
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A curing oven into which the mandrels would be placed after
each layer is made to cure the matrix.

Handling equipment (a mandrel and fiywheel section might
weigh five fons).

Inspection equipment.
Raw materials handling and storage.
Flywheel rim-to-hub assembly fixture,

Probably three or four parallel sets of some of this equipment would be
installed in a facility in order to reduce the total manufacturing time.

Winding a flywheel of this size could take considerable time. Typically,
a section might be made of 12 to 14 layers (concentric rings). Each layer
would have 192 wraps. Winding four rovings at a time, it takes 10 revolutions
to axially wind 1 in. A 6~in.-wide ring would take 60 revolutions of the
mandrel!. One concentric ring would require 11,520 (60 x 192) revolutions of
the mandre!l. At 8 rpm, which appears to be a practical roving feed speed for
this size rim, this process would take 24 hr. A complete flywhee! (17 sections
of 14 layers each) would require 238 24~hr days for winding only if a single
winding machine were available. In addition, there are other operations that
must be performed as each layer is wound (gelling, curing, cleaning, inspection,
and possible repair). Because this flywheel is considerably larger than those
manufactured previously, some time would have to be devoted to developing
manufacturing ftechniques.

Preferred Flywheel Design

After ygiving consideration to the availability of materials and fabri-
cation technology, it appears that the steel flywheel is the most practical
for development and deployment for at least the next 10 years. The potential
of composite or hybrid fiywheels is fully expected fo be realized prior to the
year 2000. Therefore, this decision must be reassessed periodically to assure
that the optimum flywheel type will go intfo ultimate production for wide-
spread application of the WESS concept.

The flywhee! design considered to be optimal for the demonstration phase
of the program is the steel flywheel of design no. 7 shown in Table 3-5. As
pointed out above, this flywhee! is designed in view of the realities of pre-
sently available materials, material cost, and limitations in heat-treating
facilities. This flywheel will be made by flame-cutting unpierced 13.7-sq ft,
3-in.-thick blanks of the Luken Electrosliag Remelt Processed 4340 steel. This

stock is currently available in mill run quantities at approximately 60 cents
per pound. These blanks wil! be Blanchard-ground on both faces and cut to
13.5-ft-dia discs, which will be jig-drilled for ftwenty-four 6-in. holes around
the outer periphery. The finished discs will be heat treated to a minimum

yield strength of 200,000 psi. The top and bottom discs will be forgings,
which include suitable hubs on the specially shaped end discs. Consideration
in final design will also be given to electron-beam or inertia welding of

the hubs on the end discs. The complete 5.5-Mwhr steel flywheel will then
comprise 67 center discs and two end discs.
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The flywheel rotor will be assembled in situ at the WESS grade, as is the
practice with large hydroelectric generators. The lower hub will be lowered
info the lower bearing and then the center discs will be stacked on the lower
disc. When the upper disk has been placed on the stack, 24 through-bol+ts will
be used to hold the rotor assembly together. These bolts will be placed in ten-
sion, either by inserting and Tightening heated bolts or by local tensioning
of each bolt.

The 10-Mw electrical machine used fo spin the flywheel and fo extract

energy from the rotor then wili be instalied. This conventional polyphase
synchronous machine is essentially a standard 1800-rpm design that will be
modified, if necessary, to permit operation up to 2037-rpm flywhee! speed. The
flywheel will be dynamically balanced by spin-up, using the flywheel machine

with weights added fo the rotor ends to effect balance.

The leading characteristics of this optimum steel flywheel are summarized

in Table 3-7. The housing around the flywhee! will be sufficient to support
the bearings and to provide the capability for supporting a vacuum. The entire
flywhee! in its housing wil! be tocated in a waterproof concrete pit below grade

level at the WESS site.

TABLE 3-7

CHARACTERISTICS OF OPTIMUM STEEL FLYWHEEL

Total capacity 7.33 Mwhr
Usable capacity (2 to 1 speed range) 5.5 Mwhr
Maximum speed 2037 rpm
Diameter 13.5 ft
Length 17.28 ft
Weight 604.4 tons

Peripherat speed

Vacuum requirements

Loss at 100 percent speed
Loss at 50 percent speed
Moment of inertia

Spin-down time (100 to 50 percent
speed)

1440 ft/sec

10 torr

136 hp

48 hp

855,800 |b-ft-sec?

87 hr
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Flywhee!l Housing Evacuation

The area immediately surrounding the rotating flywheel must be evacuated
for two reasons:

(a) To reduce windage losses
{b) To reduce aerodynamic heating

If a steel flywheel is used, the first reason, windage losses, predomi=-
nates. If the housing is evacuated sufficiently to reduce the windage to a

reasonable value, aerodynamic heating will be low enough to be no problem.
Also, the vacuum requirements are not very severe, and an absolute pressure
of 10 torr (or even higher) will reduce windage to a negligible value. This

pressure Is compatible with the oils that might normally be used in the bearing
system. Furthermcre, the steel flywheel is not very sensitive to an increase
in housing pressure, and can, in fact, be made to survive a sudden loss of
vacuum without damage.

On the other hand, the composite flywheel requires a much higher vacuum
because of the higher tip speed and the sensitivity of the epoxy binder to
temperature. A composite flywheel will require an absolute pressure environ-
ment in the neighborhood of 1 to 10 microns (1000 microns = one torr), and
any significant increase in pressure could almost immediately result in damage
to the surface of the flywheel. The high temperature resulting from windage
makes the surface vulnerable because of the low specific heat and the low
thermal conductivity of the laminate. Therefore, much more complicated
evacuation system would be required. Some considerations of this system would
be:

(a) Better sealed housing (including shaft seal)
(b) Great vacuum pump capability

(c) Better controls to sense pressure and changes in pressure that might
indicate an impending problem

(d) Any oils that are exposed to the low pressure must have corresponding
low vapor pressure at the expected operating temperature

(e) Special provisions for repidly slowing down the flywhee! in the
event of loss of vacuum

The requirements for the hybrid type of flywheel would be the same as
those for the composite flywheel.

For either type of installation, commercially available vacuum pumps would
be used. |If the housings were manufactured with reasonable care, the principal
source of leakage would be the shaft seal. Therefore the pump basically is
designed to accommodate the shaft seal leakage. A 1-hp unit (15 cfm displace-
ment) shouid be sufficient for a steel flywheel installation, but a somewhat
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larger unit (possibly 5 hp and 80 cfm capacity) might be required for a com-
posite fiywheel. The evacuation system could be a demand type so that power
would be consumed only as required to maintain the desired condition. In any
event, the pump power requirement for the steel wheel is very small, compared
with the hydrostatic bearing power requirements. Also, with a composite fly-
wheel, vacuum pump power should be no more than 5 percent of total installa-
tion power requirements. Therefore, the choice of the steel flywheel minimizes
the vacuum requirements considered.

Flywheel Bearings

The flywheel for the WESS is installed with a vertical rotational axis.
At least one bearing would have to support the weight of the flywheel as an
axial load. Design objective is to have a very long service life. Conven-
tional rolling element bearings (ball or roller bearings) would be ideal from
a frictional point of view, but the lifetime of rolling element bearings is
limited under heavy load. Therefore, other longer-life types were investigated
for the bearing to support the weight of the flywheel.

Rotling element bearings were still considered for two locations in the
fiywheel:

1. The upper shaft bearing that would be relatively lightly loaded,
functioning only to keep the rotor vertical.

2. An emergency bearing to receive the weight of the flywhee! rotor
in the event of a failure of the main thrust bearing. A rolling
element bearing is well-suited to this type of service because
it can withstand high overloads for a short period of time.

Fluid Film Bearings

Two main types of fluid film bearings exist: self-acting and externally
pressurized (hydrostatic). For large loads and high speeds they have the
advantage over rolling element bearings of potentially infinite life; this is
due to lack of contact between the rotating and stationary elements, and operation
at much lower stress levels. The self-acting type is not load-supporting on
the oil film alone until the design operating speed is nearly reached. This
leads to problems in startup and shutdown. On the other hand, the hydrostatic
type is supported from standstill on the pressurized oil cavity. This type of
bearing was selected to support the flywheel in the WESS application.

Magnetic Suspension

Magnetic suspension could be used to support the weight of the flywheel;
or, at least, to partially support the weight and lessen the load on the other
thrust bearing. To be effective, a magnetically supported flywhee!l should be
short and have a rather large diameter in order to present sufficient axially
exposed surface area per unit of weight. This configuration is not compatible
with the high rotative speeds desired in this application. Alsc, application
of magnetic levitation to an object the size of this flywhee! would be very
experimental and is not recommended to be included in the present design.
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Selected Design

The sefected design for the flywheel bearings is shown in Figure 3-11.
The flywheel is supported principally by means of a spherically radiused
hydrostatic bearing as shown in Figure 3-12, This hydrostatic bearing has
four pockets through which oil at high pressure is fed to the bearing. The
pressure-projected area product is sufficient to support the entire weight
of the rotor. The spherical shape tends to maintain the axis of the rotor
coincident with the axis of the bearing.

Before operation, the weight of the rotor is supported by the rolling
element thrust bearing (item A of Figure 3-12). The weight of the rotor
depresses the unpressurized bearing, B, which is supported by several weak
springs, S. At this time there is a gap, D, between the bearing shoe B, and
the stator, C. At startup, oil under pressure is supplied to the cavity, E,
under the bearing shoe. This oil is communicated to the four pocketfs in
the bearing shoe and the resulting force lifts the rotor and supports it on a
thin film of oif leaking from the bearing pockets to the edge of the shoe.

At the same time the entire bearing shoe is lifted by the pressure in the lower
cavity, closing the gap, D, and lifting the rotor clear of thrust bearing, A.
Thus the entire rotor assembly is then supported by the hydrostatic bearing
only. The support of the hydrostatic bearing is not a function of rotor speed
so the rotor is supported from standstill to maximum speed.

If the hydraulic system fails, the hydrostatic bearing would collapse,
but the rotor would again be supported by the rolling element thrust bearing,
A. This bearing would be sufficient to support the rotor until it is slowed
to a standstill,

A hydrostatic bearing has two principal! sources of power consumption:
(1) the power required to pump the pressurized oil to the bearing; and (2)
the power consumed in shearing the oil at the shaft/shoe interface. These
relationships are considered in the bearing detail design to optimize the
various factors and bring the power consumption to a minimum. The approximate
size of fthe bearing for the proposed flywheel system is shown in Figure 3-12.

The upper end of the fiywheel shaft is supported in the radial direction
by means of a roller bearing as shown in Figure 3-13. This bearing is
reseliently mounted and loaded so it will have an extfremely long life. The
outer race of the bearing is eliptical to maintain positive contact between
the rollers and the race ways. This bearing is cooled by oil flowing under
the inner race, and lubricated by a minute amount of oil that is allowed to flow
through the bearing.

Flywheel Shaft Seal

Some sort of air seal must be provided to separate the flywheel cavity
from the surrounding ambient air. |f a steel flywheel is used the flywheel
cavity pressure needs to be reduced fo approximately 1 to 10 torr; but if a
composite flywhee! had been used the pressure would have been less than 10
microns. This lower pressure puts a much more severe requirement on the shaft
seal.
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Figure 3-11. Flywheel Lower Bearing Arrangement

Figure 3-12. Hydrostatic Thrust Bearing
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Figure 3-13. Upper Flywheel Bearing and Shaft Seal Assembly

Face seals have been used effectively on smaller and higher-speed fly-
whee! applications, but the service life is limited as to that desired for the
WESS flywheel. Special care in seal design and installation might permit
the use of a face seal, especially if the design permitted easy replacement
after possibly 20,000 hours of operation. At the present time this type of seal
probably is the best option with other designs, discussed below, being inves-
tigated for possible application when proven feasible.

Ferro~Fluid Seal

This ftype of seal has been suggested for a number of similar applications,
but no high-speed long-duration applications are known. The principle of opera-
tion, as shown in Figure 3-14, involves a fluid into which there is a colloidal
(100 angstroms) suspension of magnetic particles that are retained in the seal
area by means of permanent magnets in the housing. While this arrangement
will provide an excellent near-zero friction seal for low-speed shafts, the com-
bination of problems incurred by viscous heating and centrifugal forces asso-
ciated with a high surface speed ( 3000 fpm) shaft make this application an
advance in the state of the art.

Slinger Seal

Another type of seal that may work in this application is the slinger
seal, as shown in Figure 3-15. In this seal, a slug of oil is held in an
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annular groove in the housing by the centrifugal force on the oil slug. The
rotating oil slinger, which puts the oil into this groove, also acts as a dam
whose outer periphery is submerged in the oil pool. In this design, a number

of criteria must be simultaneously satisfied if proper sealing is to be obtained;
any upset could lead to sudden and catastrophic pressurization of the fly-

wheel cavity in the case of a composite or hybrid rofor. Also, this design
requires that the shaft be rotating at some speed before the seal can be
initially formed. I!n order to retain the pressure differential across the

seal, an equivalent head must be developed by the fluid column across the seat.

Flywheel Machine

The 7.5-Mw flywhee! machine used for estimating purposes is a conventional,
utility type of brushless (rotating rectifier), synchronous, four-pole, elec-
frical machine that can be operated either as a motor or generator at a 7.5-Mw
power level over the full operating speed range (1018 to 2037 rpm). The typical
efficiency of this air-cooled machine at rated power level is 97 percent. The
machine is mounted with a vertical rotational axis above the flywheel. [T
weighs 150,000 Ib.

Because the fiywheel machine is ftypical of small utility generators,
cost estimates for the 7.5-Mw capacity were obtained from the large machinery
department at General Electric Corporation (GE) and Westinghouse. The average
cost for machines of this type in the 7.5-Mw capacity range was found to be
$60 per kw. This cost was also used in the economic analysis.

A general outline of the machine is shown in Figure 3-16 {(as supplied by
GE), and is a commercially available, small-size utility generator.

Flywheel Converter

The static power converter (Figure 3-17), which connects the flywheel
machine to the railroad electrification system, converts 2-phase, high-voltage
60-Hz power tfo variable-frequency, 3-phase power to operate the flywheel machine.
The output frequency range of the converter in normal operation varies from 34
to 68 Hz at a continuous power rating of 7.5 Mw as the flywheel is operated
over its 2:1 speed range. 1In addition, the converter must provide controllable,
low-frequency power capable of being varied from about 1 to 34 Hz at reduced
power levels. This capability is used only infrequently, for flywhee! startups
after inspection or after an unscheduled shutdown.

The decision regarding operating voltage involves a detailed design study
to trade off the cost of fransformers against the cost of devices. For this
study, The cost of $30 per kw is based on using sufficient series bridges to
accommodate 50 kv without using transformers.

The configuration used allows direct phase~to-phase regeneration without
the need to pass through the flywheel. The addition of a bridge for phase C
would allow balanced 3-phase regeneration fto the utility. This third bridge
also could be used to accommodate situations where the railroad uses all three
phases for the catenaries (as may be the case on the Harrisburg-Pittsburgh route).
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Figure 3-17. Simplified Schematic of Flywhee! Converter

Flywheel Station Construction

The construction of a WESS flywheel station at a remote site was analyzed
by Bechtel, based on their broad experience in products such as pumped hydro-
electric stations. The flywheel assembly building concept recommended by
Bechtel is shown in Figure 3-~18. The flywhee! is located in a concrete pit
below grade to preclude any safety hazard due to flywheel failure; the flywheel
machine and system ancillaries are located in the steel building above grade.

The plan layouts of the flywheel building and the adjacent converter
building are shown in Figure 3-19. The overall WESS site, the building, adja-
cent electrification, equipment, and access to the site are shown in Figure 3-20.

The $160,000 cost derived from the Bechtel estimates for construction of
the flywheel energy storage station does not include the costs of electrification;
this cost is separately estimated under item 5, Wayside.

Fiywheel Cost

The cost of the flywheel has been analyzed in detail and the results are
shown in Appendix D. Most of the cost is attributable to the fiywhee! materiat,
and an accurate asscssment of this cost element is clearly essential. A cost
of $0.60/1b for miii run quantities of SAE 4340 stee! was supplied by Luker
Steel. (For two flywheel discs only, the cost would be $0.65 per Ib). This
firm price for the major cost item ensures the acceptability of the AiResearch
estimate.
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SECTION 4

ECONOMIC SOURCES AND METHODOLOGY

The potential benefits of wayside flywheel stations are largely economic.
No particular social benefit results from the deployment of WESS, although
reduced fuel! consumption is a desirable material goal. The major savings are
locomotive fuel or energy and reduced size of the locomotive fieet; other
savings are reduced frack, brake system, and wheel maintenance, and possibly
higher and more uniform consist speeds. These savings must be compared on
a time-consistent basis with the initial investment cost and maintenance costs
for the flywheel system equipment.

The comparison of savings to costs has been performed by using the several
accepted economic techniques. The wayside energy storage system can be con-
sidered economically viable if (1) the savings exceed the costs sufficiently
to provide a reasonable refturn on invested capital, including interest charges,
and (2) savings compensate for the uncertainties associated with the introduc-
tion of new technology.

ECONOMIC ANALYS!S TECHNIQUES

To simplify the calculation of return on investment (RO!) in the economic
analysis, it was assumed that all investments were made in year zero of the
30-year economic life of the system. (Year zero is defined as 1990 for the
purpose of this study, this being the earliest that a production WESS system
could be deployed). Savings were calculated at the mid-year point for each of
the 30 years.

The economic techniques to be employed in this study were agreed upon by
TSC and FRA at an early stage, when an attempt was made to assess the viability
of the WESS concept using the techniques with which industry and government are
most familiar. These techniques are described below.

Office of Manayement and Budget Circular A-94

This is a net present worth or net present value technique and, as fhe
name implies, is concerned with assessing the value of monies spent or saved
in future years in terms of today's money value; however, this is not a tech-
nique for dealing with inflation. OMB A-94 allows relative inflation to be
taken into account. Inflation factors are shown in Table 4-1.

A crucial discussion to be presented is the rate at which future monies
should be discounted. OMB A-94 dictates that 10 percent be used because this
represents an estimate of the average rate of return on private investment,
before taxes and after inflation; however, railroads typically realize only
a 5 to 6 percent rate of return and therefore the applicability of the OMB
A-94 quidelines to WESS is questionable. For this reason the results derived
from this technique were not used as the baseline case.



TABLE 4-1

SUMMARY OF INFLATION RATES

General
Analysis Diesel Price
Technique Fuel Electricity Maintenance Level
OMB A-94 2 1 2 0
4R Act 0 0 0 0
Sensitivity 1 8 7 8 6
Sensitivity 2 10 7 8 6

Railroad Revitalization and Regulatory Reform (4R) Act-1976

The purpose of the 4R Act was to provide financial assistance for the U.S.
railroads to enable them to invest in essential new projects (such as frack
maintenance, track reconfiguration, etc.). 11 was considered prudent to assess
the benefit of WESS using the guidelines of the 4R Act even though WESS would
probably not qualify for 4R assistance as the Act is currently structured.

Because the 4R Act guidelines make no al lowance for general or relative
inf lation, AiResearch feels that the resuits do not reflect the real world.
Therefore, the results from this ftechnique were not used as the baseline case.

Sensitivity Analyses | and 1|

These analyses were recommended by AiResearch as being a real-world case,
taking inflation into account and producing an output based on current dollars.
Like the 4R Act, they employ ROl techniques, the only difference being the
recognition of inflation. The inflation factors for the two analyses are shown
in Table 4~1.

Sensitivity | was used as the baseline case for tThe economic analyses because
this is considered to be the most realistic scenario.

INFLATION

In a study such as this, when the year of decision is 1990 and the hardware
is designed for a 30-year economic |ife, the choice of inflation factor is a
crucial decision. Many different components make up the tota! costs and annual
savings; historically, each of these components has increased in cost at differ-
ent rates relative to general price level (GPL).

General Price Level

When the inflation factors were formulated in September 1977, the GPL was
rising at & percent per year. This figure has been used in the study, although
at the date of this report, the GPL is rising at 10 percent per year.
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Diesel Fuel

The diesel fuel inflation is difficult to predict since, more than any
other item, it is subjected to international political pressure. Reference
9 suggests that diesel fuel will probably escalate at between 2 and 4
percent above the GPL over the next 25 years, and Figure 4-1 is based on a
2-percent differential inflation rate. Therefore, 2 percent above GPL is
considered to be the most realistic estimate for fuel inflation.

Electrical Energy

Because electrical energy may be derived from various sources (oil, gas,
coal, nuclear, and--in the future--solar and geothermal), it is less sensitive
to the variation in relative price of any one |b-base fuel. Reference 9
suggests that electrical energy will inflate at 1 percent per year for the
next 25 years; this agrees with the predictions of Figure 4-1.

Maintenance

Department of Commerce (Bureau of Labor) projections of increased costs
in manufacturing and nonmanufacturing industry have historicalliy shown an
increase in maintenance costs of 2 percent above GPL. This level of increase
has been assumed to continue for the life of the WESS.

ECONOMIC ANALYSIS METHODOLOGY

Economic Scenario

Four economic scenarios have been developed, based on the three operating
scenarios described in section 2 of this report. They are:

Dual-Mode Locomotive-—All motive power normally operating on this route is
converted to the dual-mode concept, and credit is taken for the reduction
in fleet size that results from the increased fractive effort of these loco-
motives. Electrification is available only at grades.

Electric Helper--Regenerative electric locomotives are stationed at the
grades and a saving in diesel locomotives is claimed due to the easing of the
gradient duty imposed on the diesel locomotives. Electrification is available
only at grades.

Electrified Railroad--Where the railroad is already electrified, the only
costs to WESS are for the installiation of the flywheel station and modification
of electric locomotives.

Concurrent Electrification and WESS--The diesel railroad is converted to
electric operation and all the associated changes are considered with the cost
of the WESS stations.
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Economic Computer Program

To accommodate the large amount of data in the economic analysis,
AiResearch generated a computer program, for which a simplified flow chart
is shown in Figure 4-2. The program listing is contained in Appendix E.
It has been written for the Univac 1100 computer,

1. Description of Program

Main program: WESS - calls subroutines INPUT and DETA{L
Subroutines: 1. [INPUT Reads input data from cards
2. DETAIL Main subroutine: Organizes data for site rankings,
calls subroutines for economic analysis; calls
subroutines TREE, G1990D, SUM90, NPVNAS and REPORT.
3. TREE Sorts subroutine, aids in site rankings.

4., 6G1990D Converts 1977 dollars into 1990 dollars

5«  SUM9O Sums 1990 doltlars--initial investment and
annual costs.

6. NPVNAS Calculates net present values, net annual
savings. Calls subroutine RONINV,

7. RONINY This subroutine determines the return on
investment., Calls subroutine ITRAT.

8. |TRAT Auxiliary subroutine that aids in the iter-
ative solution for return on investment,

9. REPORT Prints final report, called by subroutine DETAIL.

10. BLKDAT  Fortran block data element that contains initial
values for most variables used in the program.

The program size is approximately 15,000 decimal words.

2. Description of {nput Data

Input data can be stored in the block data subroutine and also input via
four namelists in subroutine INPUT. Any data input always override data stored
in the program.

Fortran namelists can be used to input any necessary data or titles for

the WESS program. The names of These four namelists are: ONE, TWO, INVEST,
and ANNUAL. Tables 4-2 through 4-5 define the variables in each namelist.
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TABLE 4-2

INPUT VARIABLES IN NAMELIST ONE

10.

11.

13.
14,
15.
16.

17.
18.

19.

20.

IROUTE

iSEN

1ANANO

NOSITT

KSTART

RMILES
TDENEB
TDENWB
GTTONS
NoLoC

LOCTYP
LOCUSE
LOCFMI
SCENIO
FLYCOS

1 RNAME

| RROAD

I PR

NOFI X

FIX

]

Points to ROUTE analyzed; can have a value of 1, 2, 3
or 4 (1)*

ScENario; can have a value of 1, 2, 3 or & (1)
Points to scenario used.

ANAlysis Number; four characters can be input which
identify the analysis number. (Ak format)

Maximum number of sites per route (1)

Minimum number of sites to be analyzed. Note: NOFIXs
KSTARTSNOSITT (1)

Route MILES (1)

Traffic DENsity East Bound (millions of tons), (R) %=
Traffic DENsity West Bound (millions of tons), (R)
Gross Trailing TONS (1)

Number Of LOComotives (I)

LOComotive TYPe (LA6 format)

LOComotive USEage (R)

LOComotive Fleet Mileage (R)

SCENarl0 description title - (6A6, Al format)
FLYwheel COSt (R)

Route Title - up to 2k characters can be used to describe
route. (4A6 format)

Railroad Title - up to 10 characters. (A6; Al format).

Debug print flag - IPR = 0 gives no debug print & IPR = 3
gives maximum debug print (1).

Number Of sites to be FiXed (1).

Site numbers to be FiXed (always to be included in
economic analysis). Up to 10 sites can be fixed (l).

% (1) indicates integer (no decimal point).

%% (R) indicates real number (decimal point).
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TABLE 4-3

INPUT VARIABLES [N NAMEL IST TwO

1. ISITES Array which contains numbers which ldentify each SITE
Z. MILEPF MiLEPosts, From-array, (1)
3. MILEPT MILEPosts, To-array, (1)
L. ESAVMP Energy SAVed at railroad Metering Point. Units of KWwH
for scenario #3; otherwise the units are in gallons. (R).
5. REGPL REGeneration Power Level, MW (R)
6. FLYSC FLYwheel Storage Capacity, MWH (R)
7. STABLD STAtion BuilDing (constant), flywheel station costs
($M)3  (R)
8. ELEHEL ELEctric HELpers (1)
§. EHCREW Electric Helper CREWs (1)
TABLE L4-4
INPUT VARIABLES IN NAMELIST [INVEST v
1. NEWLOC Number of NEW LOComotives required. (1)
2. COSNEW CoSt ($M) for each NEW locomotive (R)
3. MoobLoC MODified LOComotives Required (I)
L, cosSMoD oSt ($M) for each MODified locomotive. (R)
5. LOCTRA Number of LOComotives TRAnsferred. (1)
6. COSTRA £0S ($M) for each locomotive TRAnsferred (R)
ROUTEE ROUTE Electrification $M. (R)
COSEND Route END of program COSt $M. (R)

9. SITELE SiTe ELEctrification $M. (R)
10. ELECHI Cost of ELECtric Helpers per site, $M. (R)
% All input variables for namelist TWO represent arrays which require a value for

each site.

7k Dollars in Millions.

%% The variables input thru Namelist INVEST are all for initial investment.
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TABLE 4-5

INPUT VARIABLES IN NAMEL {ST ANNUAL=*

1. CILMCS
2., TCILMC
3. EMATPM
L, TEMTPM
5. DFSMPG
6. TDFSTM
7. DFSIPG
8. TOFSTI
9. SAVLRP

10. TSAVLR
11. ELEENE
12, ADDLAB
13, NYRCON

14, DISCON

15. EHELPM

16. ADLABR

17. RPEAKD

18. EMAINT

Change In Locomotive Maintenance CostS$ (route dependent),
$ per mile. (R)

Total Change In Locomotive Maintenance Cost for route,

$M. (R) .
Route Electrification Maintenarce, $M per mile. (R)
Total Route Electrification Maintenance, $M. (R)

Diesel Fuel Saving (train movement & route dependent)
$ Per Gal. (R)

Total route Diesel Fuel Saving (Train Movement) -$M. (R)

Diesel Fuel Saving (train idling & route depeﬁdent) $
Per Gal. (R)

Total route Diesel Fuel Saving (Train Idling) $M. (R}

SAVing in Locomtive RePlacement, $ per locomotive,
route dependent. (R)

Total SAVings in Locomotive Replacement, route dependent,

$M. (R)
ELEctrical ENErgy, route dependent, $M. (R)
ADDitional LABor, route dependent. $M. (R)

Number of YeaRs CONsidered after Jan 1, 1990, YRS.AQ})

DISCOuNt rate, fraction. (R)

Electric HELPer Maintenance per site, $M. (R)
ADditional LABoR per site, $M. (R)

Site Reduction in PEAK Demand, $M. (R)

Electrification MAINTenance per site, $M. (R)

Data for ANNUAL cost & credits.
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ECONOMIC VARIABLES

It can be seen from the above that the costs and credits for the system
application have been considered as those that are route-dependent and those
that are site-dependent.

Route-Dependent Costs and Credits

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(J)

(k)

New Electric Locomotives—-Dependent on the traffic flows between

classification yards and applies only to economic scenario 4.

Modified Locomotives Required--As in item (a), dependent on traffic
flow between classification yards.

Locomotives Transferred-—-Reflects reduction in locomotive fleet size
owing to introduction of WESS locomotives. Each transferred loco-
motive is assumed to be worth half the new cost.

Route Electrification--Considered only in scenario 4, when whole route
electrification is applied.

Saving in Locomotive Replacement--Based on not having to replace as
many locomotives each year due to the reduction in fleet size.

Change in Locomotive Maintenance Costs—--Dependent on change in number

or type of locomotive considered.

Electrification Maintenance-~Only applicable in scenario 4, where new
electrification is installed throughout.

Electrical Energy—-OnIy applicable in scenario 4, where diesel oil
consumption is replaced by electrical energy considered over the
entire route.

Diesel Fuel Saving (Train Movement)--Only applicable to scenario 4,

as in item (h) above.

Diese! Fuel Saving (Train Idling)--Appl!ies when the number of diesel

locomotives in the fleet is reduced and unnecessary idling is elimin-
ated.

Additional Labor--Charges WESS with the additional labor required at

classification yards for changing motive power, which would normatlly
run through.

Site Dependent Costs and Credits

(a)

(b)

Flywheel Station--Includes building, flywheel, flywheel machine, and

flywheel converter.

Site Electrification--includes catenary signaling, utility ftie-in,

and substation.



(c) Electric Helpers--Dependent on fraffic flow and grade length and
applies only to scenario 2.

(d) Electric Helper Maintenance--tEstimated at $0.35/mile and applies only
to scenario 2.

(e) Additional Labor--Includes manpower for the electric helpers.

(f) Energy Saving at the Railroad Metering Point--Calculated from TPC and
assigned the appropriate monetary value.

(g) Reduction in Peak Demand--The flywheels have been sized to accommodate
a reduction in peak demand of 6 Mw at each location. This savings
applies only to scenarios 3 and 4.

(h) Electrification Maintenance--Where electrification is available only
at the site (scenarios 1 and 2), then electrification maintenance is
site~-dependent,

Sensitivity Analysis

The use of the computer enabled AiResearch to carry out a sensitivity
analysis on the following cost elements, which were identified as being of
particutar interest in the study:

Flywhee!l cost +50 percent

Dual-mode locomotive cost +50 percent

Energy saving +25 percent, -50 percent
ECONOMIC ANALYSIS STRUCTURE

Before using the economics program it is necessary to determine the ruling
grades so that when claiming a reduction in locomotives, the remaining locomotives
are able fto negotiate the route at the required speed or journey time.

Having inputted all the variables listed, the program will then analyze all
the grade information and output the results of each economic analysis technigue
for @ diminishing number of grades. The selection procedure is based on the
combination of grades that will give the next best (or worst) ROl so that the
RO! shown represents the best possible combination of grades for those grades
tified on that route.

The output from the computer program is contained in Volume 3. A detailed
description of the sensitivity analysis applied to each route is contained in
section 5 of the present volume.

CALCULATION OF ECONOMIC DATA

Motive Power Related Nata

Consider a route of length "L" miles carring a total traffic of T MGTT/year,
operating with locomotives that achieved a utilization of n locomotives/109
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GTTM/year. Therefore, the number of locomotives (N) required to operate the
route is given by

N=npn TXL x 103

As previously discussed, the value of n is dependent on the locomotive type
under consideration and the dispatching policy of the railroad. Having estab-
lished the existing fleet size, it is possible Then to determine the reduction
in fleet size due to either the dual-mode, electric helper, or electrified
railroad scenarios, and this gives the number of locomotives to be fransferred
and modified.

The determination of the reduction in the diesel fleet aliows the main-
tenance and idling fuel saving to be calculated. Knowing the fton miles/year for
the route and The average train size, it is possible to determine the total
locomotive miles for each scenario and the change from the existing condition.
Locomotive maintenance costs have been obtained from reference 5.

IT is well known that diesel locomotives spend long periods idling due
to many operational considerations such as bafttery condition, climate, etc.
Reference 8 provided information to formuiate Table 4-6, which shows that
a typical SD40 locomotive spends 12 hr per day idiing. |f the locomotive
fleet is reduced, then so is the total amount of fuel consumed during idling.
AiResearch judged that of the 12 hr spent idling, 8 hr of this could be termed
unnecessary (i.e., not while the locomotive is on the road). Therefore, if
the fleet is reduced in size, the saving due to elimination of idling would
be conservatively calculated as:

locomotives saved x 5.5 gal/hr x 8h/day x 310 day/yr

TABLE 4-6

EXAMPLE OF A TYPICAL DAILY EMD SD40 DIESEL LOCOMOTIVE UNIT OPERATION

Throttie Delivered Operation, Fuel Rate,
Position Horsepower hrs gal/hr
8 3100 3.6 168
7 2550 1.0 146
6 2000 1.0 108
5 1450 1.0 79
4 950 1.0 57
3 500 1.0 41
2 200 1.0 25
1 58 1.2 7.5
Idle 12.0 5.5
Dynamic Brake 1.2 25
Total - 24,0 -




The diesel fuel saving due to train movement is derived directly from the
AiResearch TPC and is applicable only in scenario 4.

To determine the number of electric helpers (and hence crews) required, it
is necessary to know the average number of helpers per train (N), the journey
time over the grade (T hours), and the total number of trains over the grade
per hour (X). Then the number of helpers becomes the next highest integer
muitiple of N given by the product of NTX.

The electric helper maintenance is dependent on the annual milage and was
assumed to be $0.35/mile, this being based on the AiResearch judgment tThat
the electric helper, because of its usually remote location, would cost more
to maintain than the $0.30/mile for a standard electric locomotive (ref 5).

The cost of the electric helper locomotive, including an al lowance of
10 percent for centrally held spare locomotives, was based on $191/rph (ref. 5)
giving a locomotive cost of $1.43 million.

The use of run-through agreements, allowing the locomotives of one rail-
road to carry on to the ulfimate train destination on other railroad tracks,
is increasing. Therefore, in this study, where running through is a normal
practice, it has been assumed the 20 percent of the frains must have out-of-
course motive power changes, and This has been factored info the economic
analysis by allowing 2 man-hours for each change of motive power.

Fiywheel-Related Data

The cost of the flywheel, flywheel machine, flywheel converter, and fly-
wheel building have been derived in Section 3. Knowing the energy and power
levels, The cost of all flywheel-refated items is calculable.

Electrification-Related Costs

As already discussed, initial costs of railroad electrification have been
determined by Bechtel, Inc. on a per-route mile basis. Maintenance costs were
derived from reference 5 on a per-route mile basis. Therefore, knowing the
length of The site or route under consideration, the all-electrification costs
are available.

4-13/4-14






SECTION 5

WESS APPLICATION TO SPECIFIC RAILROADS

Based on the location study, one may logically conclude that rather than
apply WESS to specific grades, prime consideration should be given fo routes
that lie between major classification yards. The four such routes considered
in The study are analyzed below.

Generally, the results of the economic analysis show that WESS applied to
today's railroads has an attractive return on investment (RO!). Except for the
special case of BM&LP, these WESS installiations provide an ROl in excess of
20 percent. Other routes, such as those identified in the location study and
those on railroads not considered in this study, would be expected to reflect
this minimum ROI.

TRAIN PERFORMANCE CALCULATOR

The train performance calculator (TPC) developed by AiResearch for the
analysis of WESS is a digital computer program that simulates the operation of
multiple ftrains over a railroad route. The TPC contains the characteristics
of the locomotives and rolling stock as internal program parameters. The route
and schedule data are input to the program. The program computes speed, time,
distance, acceleration, locomotive input power, efficiency, power factor, appar-
ent power, and energy input from the pantograph. |t also computes fractive
effort during motoring and braking from the propulsion and friction braking sys-
tems. |t performs analysis of specific energy consumption in watt-hours per
ton-mile for each train and accumulates the power and energy required for all
trains operating over specific sections of the route to define substation power
versus time and energy requirements. Simulation of up to 100 trains over a 24-
hr period of operation can be performed by the program. The program outfputs the
Time history of a selected train over the route and a listing of 5-min power
demands for each subdivision of the route (up to 10 subdivisions); it also lists
the 5-min power demands over the total route for an entire 24-hr period. Total
energy requirements for each division and the total route also are output for
the 24-hr period.

Complete details of the program, including a program !|isting, program
nomenclature, key algorithms, and input data requirements are presented in
Appendix F. s

ATCHISON TOPEKA AND SANTA FE RAILROAD

The Los Angeles-Belen route, which forms part of the AT&SF major artery,
is characterized as a 100-percent, high-speed manifest service that operates
Tygica!ly at 2.6 hp/GT; it currently has a total traffic level of some 50 x
10° GTT/year. The route negotiates the Southern Rocky Mountains and Southern
California mountains during its 900 route miles of predominantly double track.
A total of 18 potential WESS sites has been identified on this route.
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Traffic is expected to increase at an annual average rate of Z percent until
at least 1990 (ref 10). Traffic projections beyond 1990 are not available and
therefore zero growth has been assumed after 1990. The resultfs of the power and
energy calculations are shown in Table 5-1 for the entire route.

TABLE 5-1

ANNUAL ENERGY SAVING FOR LOS ANGELES-BELEN ON 18 WESS SITES

Annual Energy Savings at
Scenario 1990 Traffic Levels
Dual mode 27.82 Mgal
Etectric helper 25.04 Mgal
Electrified railraod 291,000 Mwhr

The results of the sensitivity analyses are discussed below.

Dual~-Mode Locomotive Scenario

The AT&SF dispatching policy requires that medium-sized trains attain a
minimum speed on the ruling grade of 17.5 mph. To be conservative, it has been
assumed that the dual-mode locomotive utilization will be 4.44 locomotives per

109 GTM/year, compared with 6.8 locomotives per 109 GTM/year for the existing
diesel fleet.

Therefore, 395 diese! locomotives will be required in 1990 on this route,
compared with 258 dual-mode locomotives. This results in a saving of 137 diesel
locomotives that may be transferred to other duties. Assuming that locomotives
are replaced on a 15-year cycle, the reduction in fleet size by 137 locomotives
results in an annual saving of 9 replacement locomotives.

Other savings resulting from the reduction in fleet size are calculated
in Section 4 and are tabulated in Volume 3.

1. Baseline (Analysis 1/1)

In this baseline analysis, the following assumptions were made:
) Flywheel, $0.270 million/Mwhr stored
® Dual-mode conversion, $0.211 million

® Energy saving, as calculated by TPC
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Figure 5-1 shows the results of the baseline analysis and it can be seen that
the ROI increases as the number of locomotives decreases. This is because the
major savings are achieved by the route-dependent rather than the site-dependent
factors. The decision as to how many grades would be equipped with WESS depends
on:

(a) Funding level available
(b) Whether other projects exist that show a better ROl. That is, there
may not be a project which can show an ROl greater than that for seven

locations, in which case seven locations would be equipped.

2. Flywhee!l Cost Sensitivity (Analysis 1/2)

In this analysis, flywheel costs ranging +50 percent from the baseline are
assumed; the results of the study are shown in Figure 5-2. The ROl is not sig-
nificantly affected by the change in flywhee!l cost because the major portion of
The system costs is route-dependent and constant.

3. Dual-Mode lLocomotive Cost Sensitivity (Analysis 1/3)

In this analysis, it is assumed that costs of the dual-mode locomotive
range +50 percent from the baseline analysis, as shown in Figure 5-3. The 50
percent increase in locomotive cost results in a 15 percent change in ROl. This
is tThe most sensitive variable.
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4, Energy Saving Sensitivity (Analysis 1/4)

In this analysis, it is assumed that energy saving levels are + 25 per-
cent and -50 percent of the baseline analysis. The purpose of this analysis
is to test the sensitivity of the results to differences in railroad policy
and driving techniques as far as the use of electric braking is concerned.
The results are shown in Figure 5-4 and it may be seen that the results are
not very sensitive to the level of energy saving assumed because most cost
and credit elements are route-dependent.

5. Dual-Mode Locomotive Only (Analysis (1/5)

The purpose of this analysis is to define the benefit of the WESS
when applied to a dual-mode railroad. The results are shown in Figure 5-5,
from which it can be seen that the addition of WESS to a project to convert
a rallroad to dual-mode operation would result in an increase in the ROl of
12.5 percent.

Electric Helper Scenario

The same locomotive fleet economies calculated from the dual-mode loco-
motive scenario apply to this scenario. The increase in journey time resulting
from this method of operation has not been quantified due to lack of information
from the railroad.

1. Baseline (Analysis 2/1)

In this baseline analysis, the following assumptions are made:
° Flywheel cost, $0.270 million/Mwhr stored
° Energy saving, as calculated by TPC

Figure 5-6 shows the results of the baseline analysis and it can be seen that,

as in the case of the dual-mode locomotive, the RO! increases as the number of
locations decreases. The logic of the dual-mode locomotive scenario also applies
to this scenario. The relatively low ROl (16 percent maximum) and the inept
operations procedure involved make it doubtful whether this scenario would be
considered past this study. Examination of Figure 5-6 shows that the ROl stead-
ily decreases until a negative value is reached. These values have not been
plotted because the computer program was not equipped to deal with negative
ROI's and the results may be erroneous.

2. Flywheel Cost Sensitivity (Analysis 2/2)

For this analysis, it was assumed that flywheel costs varied +50 percent
from the baseline. As shown in Figure 5-7, the RO! is not significantly
affected by the change in flywheel cost because most of the flywheel costs
are route-dependent and constant.
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3. Energy Saving Sensitivily (Analysis 2/3)

Here energy savings ranging +25 percent and -50 percent from the baseline
analysis were assumed. From Figure 5-8, it may be seen that the results are
not unduly affected by the variation in flywheel cost.

4. Electric Helper Only (Analysis 2/4)

The purpose of this analysis is fto define the benefit of WESS when applied
to a railroad that makes extensive use of electric helpers. It will be seen
from Figure 5-9 that for the case of ruling grades only, the addition of WESS
to a project to implement the use of electric helpers at the ruling grades
increases the RO! by 11 percent. The effect is much greater when considering
less attractive grades.

Electrified Railroad Scenario

Assuming no change in the AT&SF dispatching policy and the average loco-
motive utilization of 3.6 locomotives per 109 TM/year, 209 electric locomotives
will be required to operate this route in 1990. Also, because they are assumed
To exist, these locomotives will require modification to a regenerative system.
Because the base performance at the locomotive remains unaltered, there is no
reduction in the fleet size.
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1. Baseline (Analysis 3/1)

In the baseline analysis, the following is assumed:
. Flywheel cost, $0.270 million/Mwhr stored
] Energy saving, as calculated by TPC

Figure 5-10 shows the results of the baseline analysis and it can be seen that

as the number of locations increases, so does the ROl until a maximum value

would have been reached if more grades had been included. (AiResearch did not
consider grades that gave an energy saving of less thant 450 kwhr). This maximum
ROI, estimated fo be 23.5 percent, occurs when the weighting of the site-
dependent costs and savings is The same as the weighting of the route-dependent
costs in the ROl calculation. |1 is because the site-dependent costs and savings
predominate for the lower number of l|locations that the ROl increases, whereas

in the Two scenarios previously considered, route-dependent elements predominated
throughout.

2. Flywheel Cost Sensitivity (Analysis 3/2)

In this analysis, flywheel costs ranging +50 percent from the basel ine
were assumed. As shown in Figure 5-11, The ROl is not significantly affected
by the increased cost of the flywheel, although it will be seen that the optimum
RO! is achieved due to the increased site~dependent cost.
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3. Energy Saving Sensitivity (Analysis 3/3)

Here, it was assumed that energy savings were 25 percent and -50 percent
of the baseline analysis. As shown in Figure 5-12, the effect on the ROl was
insignificant.

Concurrent Electrification and WESS

As for the electrified railroad scenario, it is assumed that the AT&SF
dispatching policy is unaltered by the changeover from diesel to electric
operation. This means that in 1990, some 395 diese! locomotives in use on
this route may be transferred and replaced by 209 electric locomotives. Each
year, the replacement of 26 diesel locomotives will be saved.

Other savings resulting from the change in locomotive type (idling fuel
and maintenance) are tabulated in Volume 3.

1. Baseline (Analysis 4/1)

In This baseline analysis the following is assumed:

° Flywheel, $0.270 mitlion/Mwhr stored

° Energy saving, as calculated by TPC
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Figure 5-12. Los Angeles to Belen Electrified Railroad
Sensitivity Analysis: Energy Savings
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Figure 5-13 shows the large initial investment required when considering elec-
frification and WESS. The ROl increases as the number of locations increases
until a maximum RO! is reached at more than 18 grades. This is because the
site~dependent savings are larger when compared with the site-dependent costs
since electrification is route-dependent in this scenario. (See Volume 3.)
The low ROl's determined for this scenario are put info perspective in the
discussion of the "electrification only" case, para 4 below.

2. Flywheel Cost Sensitivity (Analysis 4/2)

[n this analysis, flywheel costs of +50 percent from tThe baseline were
assumed. The results are shown in Figure 5-14, from which it can be seen that
the flywhee!l cost does not unduly affect the ROl for WESS deployment.

3. Energy Saving Sensitivity (Analysis 4/3)

Here, energy savings of +25 percent and -50 percent from the baseline
were assumed. As shown in Figure 5-15, the maximum effect is to reduce the
RO! for 18 locations by 7 percent, which is insignificant.

4. Electrification Only (Analysis 4/4)

The purpose of this analysis is to test the benefit of incorporating
WESS at the same time as an electrification scheme is implemented. |t may be
seen from Figure 5-16 that the ROl can be increased by up to 22 percent if
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WESS is added fto the electrification scheme., It is known that fypically, the
raiiroad's own studies (but not necessarily for AT&SF on this route) generally
show an RO! for electrification of 15 to 17 percent. The low value calculated
in this economic study represents an extremely conservative approach and the
assumption of worst-case conditions throughout.

Summary of WESS Application on AT&SF

The above analysis shows that WESS, when applied to a diesel railroad
between Los Angeles and Belen using dual-mode locomotives, is economically
attractive. The electric helper scenario is not economically attractive and
would probably not be acceptable from the operational standpoint.

If the route were already electrified, WESS could be installed on at
least 18 grades with an attractive ROI.

Should AT&SF decide to electrify this route, then the application of WESS
would significantly enhance the economic justification for that electrification.

The only variable To which the results are particularly sensitive is the
cost of the dual-mode locomotive. For this reason a detailed analysis was
carried out to determine this cost (see Section 2 of this report).
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UNION PACIFIC RATLROAD

The Los Angeles-Salt Lake City route of UP is characterized as a mixed
traffic route That operates at power/ratios of up o 5 hp/GT and that currently
has a total traffic level of some 39 x 100 GTT/year. The route negotiates the
Southern California mountains during its 782 route miles, which are predomi-
inantly single frack. Ten potential WESS sites have been identified on this
route.

Traffic is expected to increase at an average annual rate of 2 percent
until at least 1990 (ref 10). Zero growth has been assumed beyond 1990, The
results of the power and energy calculations are shown in Table 5-2 for the
entire route.

TABLE 5-2

ANNUAL ENERGY SAVING FOR LOS ANGELES-
SALT LAKE CITY ON 10 WESS SITES

Annual Energy Saving at
Scenario 1990 Traffic Levels
Dua! mode 22.04 Mgal
Electric helper 19.84 Mgal
Electrified railroad 237,000 Mwhr

The results of the sensitivity analyses are discussed below.

Dual-Mode Locomotive Scenario

The UP dispatching policy requires that medium~sized trains attain a
minimum speed on the ruling grade of 17.5 mph. To be conservative, it has been
assumed that the dual-mode locomotive utilization will be 4.44 locomotives per
109 GTM/year, compared with 6.8 locomotives per 109 GTM/year for the existing
diese! fleet.

Therefore, 266 diesel locomotives will be required in 1990 on this route,
compared with 174 dual-mode locomotives. This results in a saving of 92 diesel
locomotives that may be transferred to other duties. Assuming that loccomotives
are replaced on a 1b-year cycle, the reduction in fleet size by 92 locomotives
results in an annua! saving of 6 replacement locomotives.

Other savings resulting from the reduction in fleet size are calculated
in Section 4 and are tabulated in Volume 3.

1. Baseline (Analysis 1/1)

In tThis baseline analysis, the following assumptions were made:

® Flywheel, $0.270 million/Mwhr stored



® Dual-mode conversion, $0.211 million
° Energy saving, as calculated by TPC

Figure 5-17 shows the results of the baseline analysis and it can be seen that
the ROl increases as the number of locomotives decreases. This is because the
major savings are achieved by the route-dependent rather than the site-dependent
factors. The decision as to how many grades would be equipped with WESS depends
on:

(a) Funding level available
(b) Whether other projects exist that show a better ROl. That is, there
may not be a project that can show an ROl greater than that for seven

locations, in which case seven locations would be equipped.

2. Flywheel Cost Sensitivity (Analysis 1/2)

fn this analysis, fiywheel cosfs ranging +50 percent from the baseline are
assumed; the results of the study are shown in Figure 5-18. The ROl is not sig-
nificantly affected by the change in flywheel cost because the major portion of
The system costs are route-dependent and constant.
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3. Dual-Mode Locomotive Cost Sensitivity (Analysis 1/3)

In this analysis, it is assumed that costs of the dual-mode locomotive
range +50 percent from the baseline analysis, as shown in Figure 5-19. The 50
percent increase in locomotive cost results in a 10 percent change in ROlI. This
is the most sensitive variable.

4, Energy-Saving Sensitivity (Analysis 1/4)

Here, it is assumed that energy-saving levels are + 25 percent and -50 per-
cent of the baseline analysis. The purpose of this analysis is to test the sen-
sitivity of the results to differences in railroad policy and driving techniques
as far as the use of electric braking is concerned. The resulfs are shown in
Figure 5-20 and it may be seen that the results are not very sensitive to the
level of energy saving assumed because most cost and credit elements are route-
dependent.

5. Dual-Mode Locomotive Only (Analysis (1/5)

The purpose of this analysis is to define the benefit of the WESS
when applied to a dual-mode raiiroad. The results are shown in Figure 5-21,
from which it can be seen that the addition of WESS to a project to convert
a railroad to dual-mode operation would result in an increase in the ROl of
21.5 percent.

Electric Helper Scenario

The same locomotive fleet economies calculated from the dusl-mode loco-
motive scenario apply to this scepario. The increase in journey time resultfing
from this method of operation has not been quantified due to lack of information
from the railroad.

1. Baseline (Analysis 2/1)

In This baseline analysis, the following assumptions are made:
® Flywheel cost, $0.270 million/Mwhr stored
s Energy saving, as calculated by TFC

Figure 5-22 shows the results of the baseline analysis and it can be seen that,
as in the case of the dual-mode locomotive, The ROl increases as the number of
locations decreases. The logic of the dual-mode locomotive scenario also applies
to this scenario. The relatively low ROl (5 percent maximum) and the inept
operations procedure involved make it doubtful whether This scenarioc would be
considered past this study. Examination of Figure 5-22 shows that the ROI
quickly decreases until a negative value is reached. These values have not been
plotted because the computer program was not equipped to deal with negative

ROl's and the resulfs may be erroneous.
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2. Flywheel Cost Sensitivity (Analysis 2/2)

For this analysis, it was assumed that fliywheel costs varied 50 percent
from the baseline. As shown in Figure 5-23, the ROl is not significantly af-
fected by the change in flywheel cost because most of the flywheel costs are
route-dependent and constant.

3. Energy Saving Sensitivity (Analysis 2/3)

Here energy savings ranging +25 percent and -50 percent from the baseline
analysis were assumed. From Figure 5-24, it may be seen that the results are
not. unduly affected by the variation in energy saving at the low ROI's consid-
ered in this case.

4. Electric Helper Only (Analysis 2/4)

The purpose of this analysis is to define the benefit of WESS when appiied
To a railroad tThat makes extensive use of electric helpers. |1t will be seen
from the analysis in Volume 5 that the electric helper scenario alone cannot
achieve a positive ROl on the UP route, thus confirming the undesirability of
This scenario.
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Electrified Railroad Scenario

Assuming no change in the UP dispatching policy and the average locomotive
utilization of 3.6 locomotives per 109 TM/year, 141 electric locomotives will be
required to operate this route in 1990. Also, because they are assumed to exisT,
These locomotives will require modification to a regenerative system. Because
the base performance at the locomotive remains unaltered, there is no reduction
in the fleet size.

1. Baseline (Analysis 3/1)

In the baseline analysis, the following is assumed:
® Flywhee! cost, $0.270 million/Mwhr stored
. Energy saving, as calculated by TPC

Figure 5-25 shows the results of the baseline analysis and it can be seen that
as the number of locations increases, so does the RO! until a maximum value is
reached at nine grades. This maximum ROl (23.33 percent) occurs when the
weighting of the site-dependent costs and savings is the same as the weighting
of the route-dependent costs in the RO! calcutation. [t is because the site-
dependent costs and savings predominate for the lower number of locations that
the RO! increases, whereas in the two scenarios previously considered, route-
dependent elements predominated throughout.

2. Flywheel Cost Sensitivity (Analysis 3/2)

in this analysis, fiywheel costs ranging +50 percent from the baseline
were assumed, as shown in Figure 5-26. The maximum deviation in ROl due to
increased cost of the flywheel is less than 10 percent,

5. Energy Saving Sensitivity (Analysis 3/3)

Here, it was assumed that energy savings were +25 percent and -50 percent
of the baseline analysis. As shown in Figure 5-27, the effect on the RO! was
not siygnificant.

Concurrent Electrification and WESS

As for the electrified railroad scenario, it is assumed that the UP
dispatching policy is unaltered by the changeover from diesel to electric
operation. This means that in 1990, some 2066 diesel locomotives in use on
this route may be fransferred and replaced by 141 electric locomotives. Each
year, the replacement of 8 diesel locomotives will be saved.

Other savings resulting from the change in locomotive type (idling fuel
and maintenance) are tabulated in Volume 3.
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1. BRaseline (Analysis 4/1)

in this basetine analysis the following is assumed:
™ Ftywheel, $0.270 million/Mwhr stored
® Energy saving, as calculated by TPC

Figure 5-28 shows the relatively large initial investment required when consider-
ing electrification and WESS. The RO! increases as the number of locations
increases until a maximum ROl is reached at more than 10 grades. This is because
the site-dependent savings are larger when compared with the site-dependent

costs since efectritication is route-dependent in *this scenario (see Volume

3). The low ROI's determined for this scenario are put into perspective in the
discussion of the "electrification only" case, para. 4. below.

2. Flywheel Cost Sensitivity (Analysis 4/2)

In this analysis, flywheel costs of +50 percent from the baseline were
assumed. The results are shown in Figure 5-29, from which it can be seen that
the flywheel cost does not significantly affect the ROl for WESS deployment.
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3. Energy Saving Sensitivity (Analysis 4/3)

Here, energy savings of 425 percent and -50 percent from the baseline
were assumed. As shown in Figure 5-30, the maximum effect is to reduce the
RO! for 10 locations by & percent, which is insignificant.

4, Electrification Only (Analysis 4/4)

The purpose of this analysis is to test the benefit of ‘incorporating
WESS at the same time as an electrification scheme is implemented. |11 may be
seen from Figure 5-31 that the ROl can be increased by up to 16 percent if
WESS is added to the electrification scheme. [T is known that fypically the
railroad's own studies (but not necessarily for UP on this route) generally
show an ROt for electrification of 15 to 17 percent. The low value calculated
in this economic study represents an exiremely conservative approach and the
assumption of worst-case conditions throughout.

Summary of WESS Application on UP

The above analysis shows The WESS, when applied To a diesel railroad
between Los Angeles and Salt Lake City using dual-mode locomotives, is econo-
mically attractive. The electric helper scenario is not economically attrac-
tive and would probably not be acceptable from the operational standpoint.

If the route were already electrified, WESS could be installed on at
least 10 grades with an attractive ROI.

Should UP decide to electrify this route, then the application of
WESS would significantly enhance the economic case for that electrification.

The only variable to which the results are particularly sensitive is the
cost of the dual-mode locomotive. For this reason a detailed analysis was
carried out to determine this cost as shown in Section 2 of this report.

CONSOLIDATED RAFL CORPORATION

The Harrisburg-Pittsburgh route of CR is widely cited as a candidate

for electrification in the near future. It is characterized as a s!low-speed
route consisting of coal and ore unit trains as well as other mixed fraffic,
and currently has a traffic leve! of 112 x 106 GTT/year. The route negotiates
the Allegheny Mountains during its 245 route miles that typically accommodate
three or four tracks. Three potential WESS sites have been identified on this
route. Traffic is not expected to increase during the period under guestion
(ref 10) and therefore zero growth has been assumed. The results of the power
and energy calculations are shown in Table 5-3.
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TABLE 5-3

ANNUAL ENERGY SAVING FOR HARRISBURG-PITTSBURGH ON THREE WESS SITES

Annual Energy Saving at
Scenario Zero Traffic Growth
Dua! mode 6.5 Mgal
Electric helper 5.86 Mgal
Electrified railroad 66,400 Mwhr

The results of the sensitivity analyses are discussed below.

Dual-Mode Locomotive Scenario

The Conrail!l dispatching policy requires that medium-sized trains attain a
minimum speed on the ruling grade of 11 mph. To be conservative, it has been
assumed that the dual-mode locomotive utilization will be 5.1 locomotives per

109 GTM/year, compared with 6.8 locomotives per 109 GTM/year for the existing
diesel fleet.

Even assuming zero traffic growth, 190 diese! locomotives will be required
in 1990 on this route, compared with 142 dual-mode locomotives. This results
in a saving of 48 diesel locomotives that may be transferred to other duties.
Assuming that locomotives are replaced on a 15-year cycle, the reduction in
fleet size by 48 locomotives results in an annual saving of 3 replacement loco-
motives.

Other savings resulting from the reduction in fleet size are calculated
in Section 4 and are tabulated in Volume 3.

1. Baseline (Analysis 1/1)

In this baseline analysis, the following assumptions were made:

e Flywheel, $0.270 million/Mwhr stored

e Dual-mode conversion, $0.211 million

e Energy saving, as calculated by TPC
Figure 5-32 shows the results of the baseline analysis and it can be seen that
the ROl increases as the number of locomotives decreases. This is because the
major savings are achieved by the route-dependent rather than the site-dependent
factors. The decision as to how many grades would be equipped with WESS depends

on:

(a) Funding level available
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(b) Whether other projects exist that show a better RO!. That is, there
may not be a project that can show an RO! greater than that for three
locations, in which case three locations would be equipped.

2. Flywheel Cost Sensitivity (Analysis 1/2)

In this analysis, flywheel costs ranging +50 percent from the baseline are
assumed; the results of the study are shown in Figure 5-33. The ROl is not sig-

nificantly affected by the change in flywheel cost because the major portion of
the system costs is route-dependent and constant.

5. Dual-Mode Locomotive Cost Sensitivity (Analysis 1/3)

In this analysis, it is assumed that costs of the dual-mode |ocomotive
range +50 percent from the baseline analysis, as shown in Figure 5-34. The 50
percent increase in locomotive cost results in a 20 percent change in ROl. This
is the most sensitive variable.

4. Energy-Saving Sensitivity (Analysis 1/4)

In This analysis, it is assumed that energy-saving levels are + 25 percent
and ~50 percent of the baseline analysis. The purpose of this analysis is to
test the sensitivity of the results to differences in railroad policy and driving
techniques as far as the use of electric braking is concerned. The results
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are shown in Figure 5-35 and it may be seen that the results are not very
sensitive to the level of energy saving assumed because most cost and credit
elements are route-dependent.

5. Dua!l-Mode Locomotive Only (Analysis (1/5)

The purpose of this analysis is to define the benefit of the WESS when
applied to a dual-mode railroad. The results are shown in Figure 5-36, from
which it can be seen that the addition of WESS to a project to convert a rail-
road to dual-mode operation would result in an increase in the ROl of 19 percent.

Electric Helper Scenario

The same Jocomotive fleet economics caltculated from the dual-mode |ocomo-
tive scenario apply to this scenario. The increase in journey time resulting
from this method of operation has not been quantified due to lack of informa-
tion from the railroad.

1. Baseline (Analysis 2/1)

In This baseline analysis, the following assumptions are made:
. Flywheel cost, $0.270 million/Mwhr stored
° Energy saving, as calculated by TPC

The analysis results given in Volume 3 show that this scenario has a positive

RO! for site 1 only--an ROl of 2.06 percent. Therefore, the sensitivity analyses
are plotted for site 1 on!y by depicting RO! and initial investment against the
percentage of change in the variable under consideration. This confirms the
undesirability of this scenario, but does not have any relevance to the existing
diese! helper operation on this route.

2. Flywheel Cost Sensitivity (Analysis 2/2)

For this analysis, it was assumed that flywheel costs varied +50 percent
from the baseline. As shown in Figure 5-37, the ROl is not significantly af-
fected by the change in flywheel cost because most of the flywheel costs are
route~dependent and constant.

3. Energy Saving Sensitivity (Analysis 2/3)

Here energy savings ranging +25 percent and =50 percent from the baseline
analysis were assumed. From Figure 5-38, it may be seen that the energy savings
do have an effect on this already very low ROI.

4. Electric Helper Only (Analysis 2/4)

The purpose of this analysis is to define the benefit of WESS when applied
to a railroad that makes extensive use of electric helpers. The unattractive
results of this scenario are confirmed by the results of analysis 2/4 in Volume
3, where it can be seen that the electric helper alone cannot achieve a positive
ROI.
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Electrified Railroad Scenario

Assuming no change in the Conrail dispatching policy and the average loco-
motive utilization of 3.6 locomotives per 109 TM/year, 100 electric locomotives
will be required to operate this route in 1990. Also, because they are assumed
to exist, these locomotives will require modification tfo a regenerative system.
Because the base performance at the Jocomotive remains unaltered, there is no
reduction in the fleet size.

1. Baseline (Analysis 3/1)

In the baseline analysis, the following is assumed:
® Flywheel cost, $0.270 million/Mwhr stored
[ ] Energy saving, as calculated by TPC

Figure 5-39 shows the resuits of the baseline analysis and it can be seen that
as the number of locations increases, so does the ROI.

2. Fiywheel Cost Sensitivity (Analysis 3/2)

In this analysis, flywheel costs ranging +50 percent from the baseline
were assumed. As shown in Figure 5-40, the ROl is not significantly affected
by the increased cost of the flywheel.

3. Energy Saving Sensitivity (Analysis 3/3)

Here, it was assumed that energy savings were +25 percent and -50 percent
of the baseline analysis. As shown in Figure 5-41, the effect on the RO! was
only significant for the extreme case of saving only 50 percent of the calcu-
lated energy.

Concurrent Electrification and WESS

As for the electrified railroad scenario, it is assumed that the Conrail
dispatching policy is unaltered by the changeover from diesel to electric
operation. This means that in 1990, some 188 diese! locomotives in use on
this route may be transferred and replaced by 100 electric locomotives. Each
year, the replacement of 6 diesel locomotives will be saved.

Other savings resulting from the change in locomotive type (idling fuel
and maintenance) are tabulated in Volume 3.

1. Baseline (Analysis 4/1)

In this baseline analysis the following is assumed:
° Flywheel, $0.270 million/Mwhr stored

[ ] Energy saving, as calculated by TPC
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Figure 5-42 shows the large initial investment required when considering elec-
trification and WESS. The RO! increases slightly as the number of locations
increases until a maximum ROl is reached at more than 18 grades. The low ROI's
determined for this scenario are put into perspective in the discussion of the
"electrification only" case, para 4 below.

2. Flywheel Cost Sensitivity (Analysis 4/2)

{n this analysis, flywheel costs of +50 percent from the baseline were
assumed. The results are shown in Figure 5-43, from which it can be seen that
the flywheel cost does not unduly affect the RO! for WESS deployment.

3. Energy Saving Sensitivity (Analysis 4/3)

Here, energy savings of +25 percent and -50 percent from the baseline
were assumed. As shown in Figure 5-44, the maximum effect is to reduce the
ROI for 18 locations by 4 percent, which is insignificant.

4. Electrification Only (Analysis 4/4)

The purpose of this analysis is to test the benefit of incorporating
WESS at the same time as an electrification scheme is implemented. |t may be
seen from Figure 5-45 that the RO| can be increased by up to 10 percent if
WESS is added fo the electrification scheme. It is known that typically, the
railroad's own studies (but not necessarily for Conrail on this route) generally
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show an ROl for electrification of 15 to 17 percent. The low value calculated
in This economic study represents an extremely conservative approach and the
assumption of worst-case conditions throughout.

Summary of WESS Application on Conrail

The above analysis shows the WESS, when applied to a diese!l railroad
between Harrisburg and Pittsburg using dual-mode locomotives, is economically
attractive. The electric helper scenario is not economically attractive and
would probably not be acceptable from the operational standpoint.

If the route were already electrified, WESS could be installed on at
least 18 grades with an attractive ROI.

Should Conrail decide to electrify this route, then the application of
WESS would significantly enhance the economic case for that electrification.

The only variable fto which the results are particularly sensitive is the
cost of the dual-mode locomotive. For this reason a detailed analysis was
carried out to determine this cost as shown in Section 2 of this report.

BLACK MESA AND LAKE POWELL

The Black Mesa and Lake Powel| (BM&LP) railroad is electrified at 50 kv,
60 Hz and was constructed for the sole purpose of delivering coal! from the
Kayenta Mine to the Navajo Generating Station. !t has no rail connection fo
the main line U.S. railroad system. The railroad currently has a fraffic
level of 18.2 x 106 GTT/year and this is not expected to change unless a fourth
generating unit is added at the power station. During its 78 miles of single-
track, the railroad descends from the mine before rising to climb the Black
Mesa; it then descends into the Colorado Valley near Page, Arizona.

The results of the power and energy calculations are shown in Table
5-4 for the entire route, which is treated as one grade for the purpose of the
calculations.

TABLE 5-4

ANNUAL ENERGY SAVING FOR THE BLACK MESA AND LAKE POWELL ROUTE

Scenario Annual Energy Saving

Electric railroad 12,000 Mwhr

The results of the sensitivity analyses are discussed below.

Timetable Variations (Analysis 3/1)

Because the energy charge is extremely low, the major saving from the
deployment of WESS on this railroad is attributable to the reduction in demand
charges the railfroad must pay to the Navajo Tribal Utility Authority (NTUA).
The peak 1-hr demand in any 1-hr period sets the demand rate for the next
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12 mos and is charged at $5.09/kw/mo. Therefore, this analysis tests methods
of inherently reducing the demand charyge by operating a larger number of
smaller trains rather than the few laryge frains which are operated at this
time. Figure 5-46 shows the existing timetable used in analysis 3/1A; Figures
5-47 and 5-48 show the proposed timetables used for analyses 3/1B and 3/1C,
respectively, Discussions with BM&LP did not identify any objections to these
time-table changes, provided that the additional labor required was included
in The economic analysis.

From Volume 3, it can be seen that the resulting ROl's are:
Current timetable (3/1A), 10.12 percent
25-hr timetable (3/1B), 17.26 percent
24-hr timetable (3/1C), 12.82 percent

For this study, analysis 3/1B was taken as the baseline case in the subsequert
sensitivity analyses.

Fiywheel Cost Sensitivity (Analysis 3/2)

In this analysis, flywheel costs of +50 percent from the baseline are
assumed. The results are shown in Figure 5-49. Since the flywheel cost is
the major cost item, it can be seen that the increase in flywheel cost reduces
the ROI by 17 percent.

Eneryy Saving (Analysis 3/3)

In this analysis energy saving levels +25 percent and -50 percent of the
baseline analysis are used. The purpose of this analysis is to test the sen-
sitivity of fthe results to differences in driving techniques, as far as the use
of the electric brake is concerned. From the results shown in Figure 5-50, the
ROl is insensitive to the energy savings because the value of the energy savings
is low, compared with the value of the demand savings.

Summary of WESS Operation on BM&LP

The above analysis shows fthat the application of WESS fto the already-
electrified BM&LP railroad is economically attractive, provided that changes
are made to the operating timetable. The only variable fo which the results
are particularly sensitive is the flywhee! cost. For this reason, a detailed
analysis was carried out to determine fthis cost, as shown in Section 3 of this
report.
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SECTION 6

DEVELOPMENT PROGRAM PLANS

The results of the Wayside Energy Storage Study have shown the operational
feasibility and economic advantages of the wayside energy storage system (WESS).
This concept may be employed on either fully electrified railroads or on present
diesel routes by efectrifying grades and using dual-mode locomotives. On this
basis, a development program that will lead to the ultimate widespread deploy-
ment of WESS has been formulated. the overall program is structured Yo initially
address the areas of technical risk identified for the WESS concept. Once these
risks have been satisfactorily controlled, the program follows a logical process
of design, fabrication, testing, and demonstration of the WESS concept.

The three major areas of risk identified in the study are the following:
. Large flywheel

. Dual-mode locomotive

] Regenerative electric locomotive operation

The development program will continue fo address these risks until their

complete resolution makes fthis no longer necessary. The first phase of the
three-phase development program comprises design studies; these are followed by
detailed design of the complete WESS system in suitable form for a Phase ||
demonstration at the Pueblo Transportation Test Center. The third phase of

the program will entail full-scale deployment of a WESS system on an operating
railroad |ike Black Mesa and Lake Powell. The proposed schedule for the develop-
ment program is shown in Figure 6-1.

PHASE |, DESIGN AND DEVELOPMENT

This program will start with a series of design studies to establish that
the three risk areas can be controlled throughout the entire program. These
studies will be followed by the detailed design of all the elements of The WESS
system required for demonstration of both dual-mode locomotive and electrified
railroad operations at a fest site--probably Pueblo. The result of the Phase |
program wil!l be a complete set of drawings prepared for fabrication and modifi-
cation of equipment needed for a small-scale demonstration of the system.

The details of the proposed Phase | design and development program are
presented below in The form of a series of task descriptions.

Dual-Mode Locomotive Design Study

The primary objective of the dual-mode design study is The determination
of the practicality of modifying both new and existing diesel locomotives to
the dual-mode configuration. As part of this study, the operation of the regen-
erative power converter to be used on the dual-mode locomotive along with
iTts controis should pbe verified. The contractor will provide the necessary
material, labor, facilities, and services to perform the following tasks:
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1. Task |, Data Acquisition

Gather necessary diesel locomotive data required for dual-mode modification
design from locomotive manufacturers, FRA, and operating railroads.

2. Task 2, Dual-Mode Modification Preparation Study

Determine the extent of preparations (removing or moving existing equipment)
which must be accomplished to both a new and a fypical used EMD SD40 locomotive
to permit modification To a dual-mode configuration. Where it is found necessary
to move existing equipment, the contfractor will show that adequate space for
relocation exists on the locomotive.

3. Task 3, Component Specifications

Prepare a set of specifications suitable for procurement or modification of
the complete set of components required to modify a diesel locomotive to a dual-
mode configuration. The required components as a minimum will include the
following:

Pantograph

Lightning arrester
Vacuum/circuit breaker
Grounding switch

Main transformer
High-tension cable

Power converter

Smoothing choke

Traction motor (modification fo separate excitation)
Traction motor field suppiy
Supply changeover switch

Uil/air heat exchanger

4. Task 4, Control Modifications

Define control requirements for regenerative electric operation in suf-
ficient detail to permit necessary redesign of existing locomotive controls
for diesel locomotives.
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5. Task 5, Locomotive Structural Modifications

Prepare a set of drawings that define modifications to the locomotive
structure required fo accommodate the installation of the new dual-mode
locomotive components.

6. Task 6, Installation Layouts

Prepare a set of layout drawings that define the installation of the
components that constitute the dual-mode locomotive modification. These
drawings will include all necessary details on piping and ductTing required
for the installation.

7. Task 7, Electrical Interconnection Drawings

Prepare a complete set of electrical interconnection drawings sufficient
for the installation of the dual-mode modification into a diesel locomotive.

Regenerative Electric Locomotive Design Study

This study will be conducted to establish the practicality of modifying
both new and existing electric locomotives to a full regenerative-electric con-
figuration. The study will include the verification of the locomotive and its
controls for regenerative operation. The contractor will provide the necessary
material, labor, facilities, and services to perform the following tasks:

1. Task 1, Data Acquisition

Gather necessary electric locomotive data required for the regenerative
modification design from locomotive manufacturers, FRA, and operating railroads.

2. Task 2, Moditication Preparation Study

Determine The extent of preparations (removing or moving existing equip-
ment) required to permit modification to a regenerative configuration for both
a new and a typical used GE E60 locomotive. Where it is found necessary to
move existing equipment, the contractor will show That adequate space for
relocation exists on the locomotive.

3. Task 3, Compenent Specifications

Prepare a set of specifications suitable for procurement or modification
of the complete set of components required to modify an electric locomotive to
a regenerative configuration. The required modifications as a minimum will
include the following:

Converter modifications

Contro!l modifications
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4. Task 4, Electrical Inferconnection Drawings

Prepare a complete set of electrical interconnection drawings sufficient for
the installation of the regenerative modification info an eleciric locomotive.

Wayside Station Design Study

This study will be conducted to establish the complefe feasibility of the
wayside flywheel station including all of its components and the tie-in to an
electric utility and the railroad electrification. The contractor will pro-
vide the necessary material, labor, facilities, and services to perform the
followinyg tasks:

1. Task 1, Filywheel Study

Review candidate flywheel configurations suitable for full-scale WESS
application. Select the most logical configuration and conduct finite-element
stress analyses fto verify flywheel integrity and cycle life.

2. Task 2, Flywheel Ancillary Study

Conduct design studies at the following flywheel ancillaries and acces-
sories:

Hydrostatic bearing (bottom)
Roller bearing (top)

Seals

Evacuation system

Housing

3. Task 3, lInstallation Study

Determine the most economical and practical way to install the flywheel
at a typical WESS station.

4. Task 4, Flywheel Machine Specification

Prepare a specification suitable for procurement of the flywheel machine.

5. Task 5, Converter Study

Review candidate power converter configurations suitable for the wayside
flywheel station. Select the optimum converter configuration and prepare a
complete specification suitable for procurement.



6. Task 6, Interface Study

Establish the suitability of electrification interfaces between the fly-
wheel and electric utility, and between the flywhee!l and railroad.

Scale Mode! Flywheel Demonstration

The objective of this demonstration is to verify the design of the steel
axial disc type of flywhee! proposed for WESS by actually building and testing
a scale mode! flywheel. The contractor will provide the necessary material,
labor, facilities, and services to perform the foltowing tasks:

1. Task 1, Fiywheel Design

Design a 7.33-kwhr steel axial-disc flywheel rotor that operates at the
same stress levels and energy density as a full~size WESS flywheel.

2. Task 2, Flywheel Fabrication

Fabricate the scale mode! flywheel rotor using similar techniques as pro-
posed for large WESS fiywheel.

5. Task 3, Flywheel Testing

Conduct a program of spin tests on the scale model flywheel rofor suitable
to verify the power density, energy density, and cycle life predictions for the
design.

4, Task 4, Test Data Analysis

Verify the suitability of the scale model flywheel design for the full-
size WESS flywheel by analysis of the test data.

Dual-Mode Locomotive Detail Design

The objective of this task is to completely define the modification of
either a new or typical used SD40 locomotive from its original diesel arrange-
ment to a dual-mode confiquration, making it suitable for operation either as a
diesel locomotive or as a regenerative electric locomotive. The resulting draw-
ing package will be suitable for the actual modification of locomotives that
will take place during the Phase |! program.

Regenerative Electric Locomotive Detail Design

In this task, the contractor wiil fully define the modifications fo a new
or existing GE E60 electric locomotive necessary to provide a full regenerative
braking capability. The resulting drawing package will be suitable for the
actual modification of locomotives, which will take place during the Phase |
program.
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Wayside Station Detail Design

The objective of this task is to fully define a flywhee!l wayside station
that would be suitable for a WESS demonsiration at Pueblo, adjacent to the high-
voltage ac catenary electrified rail section. The drawing package will be
suitable for the actual construction of the wayside station at Pueblo and will
describe the design of a usable 1-Mwhr flywheel. All ancillaries and all
equipment required for interface with the electric utility and the electrified
railroad will be included.

The approximate cost of the entire Phase | Design and Development Program
is $3 million (1977 dollars).

PHASE 11, EXPERIMENTAL INSTALLATION

In this phase, a 1-Mwhr flywheel would be instalied at the Pueblo
Transportation Test Center. |1 would be linked to the 14-mile Railroad Test
Track, which is currently being electrified at 12.5/25/50 kv, 60 Hz. Included
in This experimental phase would be the purchase of an electric locomotive that
would be modified to be fully regenerative.

To investigate the dual-mode locomotive, it is proposed to borrow from
cooperating railroads five locomotives, which would then be modified in accord-
ance with the dual~-mode concept. After initial proving frials and system
integration testing at Pueblo, these locomotives would be placed into service
on an electrified railroad to accumuiate a minimum of 1 miliion tocomotive
miles.

The estimated cost of Phase Il is $12 million (1977 dollars).
PHASE (11, PROTOTYPE INSTALLATION

This phase consists of a full demonstration program on an operating rail=-
road. To minimize the cost of such a program, it would be advantageous if the
program were to be carried out on an electrified railroad that is also a WESS
candidate. AT this moment, The only railroad meeting such criteria is Black
Mesa and Lake Powell; however, within the timescale under consideration, it
is possible fthat some major electrification will have taken place that would
allow alternate sites to be considered.

The estimated cost of Phase il is $6.9 million (1977 dollars).
At The conclusion of Phase I, when all the major risk areas have been
evaluated, sufficient information will be available to enable railroads to

decide whether WESS operationally and economically fits into their long~term
planning.
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SECTION 7

CONCLUSIONS AND RECOMMENDAT IONS

The completion of the wayside energy storage study has resulted in the
quantification of the costs involved and the benefits derived from the concept
of recuperating braking energy from freight trains on long downgrades with
storage in a wayside flywheel. On this basis, the deployment of WESS on actual
routes of U.S. railracds has been found economically attractive. In addition,
the technical feasibility of the concept has been determined and a set of plans
has been generated to verify the operational suitability of WESS. The specific
conclusions and recommendations of this l-year WESS study are given below.

CONCLUS IONS

1. Thirty-four prime candidate sites for WESS were identified. These sites
are located on the most heavily fravelled U.S. railroads that operate over
mountain ranges. In addition, it is estimated that another 40 to 50 potential
WESS sites exist in the U.S.

2. Ten railroad routes between major classification yards have been found to
be viable candidates for local WESS installations on their grades. The instal-
lation programs could take place gradually, continuing until all worthwhile
grades are converted.

3. WESS is highly compatible with presently electrified railroads and can
effect substantial economies by providing peak demand-shaving.

4, The WESS concept enhances the economics of railroad electrification and
permits evolutionary electrification of complete routes.

5. The most practical system scenario for diesel railroads is the use of
dual-mode locomotives on WESS routes; this would provide regenerative electric
operation on grades and conventional diesel operation between grades.

6. The preferred electrification system for use with WESS is a high-voltage

ac catenary system for the fransmitting power between the wayside flywheel
station and the dual-mode locomotives.

7. The application of WESS to actual railroad grades can reduce energy con-
sumption by as much as 23 percent, depending on grade characteristics and
locomotive operating techniques.

8. The flywhee!l technology required for WESS can be based on the state of
the art for steel flywheels. (Units of similar size are currently being fabri-
cated). Future improvements in composite flywheel fabrication techniques
should reduce costs and make larger-capacity flywheels possible.

g. The use of dual-mode locomotives operating over WESS grades permits a

reduction in the number of locomotives required for the same performance on
most railroad routes.
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10. A presently available contro! system can optimize WESS operations by use
of train cispatching information, flywheel status, and electric utility demand
constraints.

7. In providing make~up power for the WESS sites, an electric utility was
found to be superior to auxiliary diesel or gas turbine power generating sets.

12. The study identified three areas of potential technical risk that should
be addressed in the subsequent development program at a cost of $22 M. The
areas of risk are:

Large Flywheel--Although steel flywheels in the weight range of the
WESS unit have been built and high energy density flywheels in smaller
capacities have been built, the combination has not been demonstrated
to date.

Dua |~Mode Locomotive-~Although no problems are foreseen, the modifi-
cation of an existing locomotive like the EMD Model SD-40 to a dual-
mode configuration has not been previously accomplished.

Regenerative Electric Locomotive Operation--With the exception of a
few Eurcpean locomotives, no extensive service demonstration has been
conducted with fully regenerative electric locomotives.

13. Use of large flywheels for user level peak-shaving and optimization of
cogeneration schemes has applications beyond WESS.

RECOMMENDAT IONS

1. The Phase | design and development program should be promptiy initiated.
As a first stage of this program, it is suggested that two design studies

be started immediately to directly address the three potential technical risk
areas. These design studies and their objectives are as follows:

Dua l-Mode Locomotive Design Study-~-Confirm the physical and elec-
trical feasibility of modifying an EMD Model SD-40 focomotive to a
dual-mode configuration. In addition, determine the electrical
characteristics of the regenerative converter and the alterations
required on the locomotive control circuitry. (The last two objec-
tives also can be used to reduce the ftechnical risk associated with
the regenerative electric locomotive operation).

Scale Mode! Flywheel--Design, build, and test a 7.33-kwhr flywheel
(0.1 percent of WESS flywheel energy) to verify the design of the
axially stacked, bolted, flat, unpierced, disk flywheel proposed
for actual WESS demonstrations.

2. Extend the application study of WESS fo include Canadian railroads in light

of the Memorandum of Understanding between DOT and Transport Canada. Three
Canadian railroads appear to have attractive combinations of traffic and
grades—-Canadian Pacific, Quebec and North Shore Labrador, and Port Cartier.
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5 The peak-shaviny potentials of WESS should be evaluated on actual candi-
date electrified railroads |ike Black Mesa and Lake Powell and the North East
Corridor (NEC), or on routes that may be electrified such as the Conrail
Pittsburgh to Harrisburg run.

4. A seminar on the latest WESS program results should be held fTo inform
operating railroads on the concept.

5. The results of the WESS program should be coordinated with cognizant
representatives of the Department of Energy to facilitate technology transfer
from WESS to other energy conservation programs such as:

- Peak-shaving at user level (similar fto NEC)
- Optimization of cogeneration schemes (similar to WESS)

H. Extend fthe Location Study (ftem |) beyond the contract limitation of nine
railroads fo identify more potential WESS locations. Additional railroads

that could be considered include the Milwaukee Road, Western Pacific, Baltimore
& Ohio, Chessie, Norfolk & Western, as well as the Canadian railroads.

7. Conduct a nationwide study of WESS application to the National Electrifi-
cation Network for routes over 40 million gross tfrailing fons per year. This
study would extend the WESS analysis to cover about 10,000 mifes of electrified
railroad.
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APPENDIX A

WAYS IDE STORAGE STUDY DUAL-MODE LOCOMOTIVE
STATEMENT OF WORK

INTRODUGT ION

The dual-mode locomotive for use in conjunction with WESS is fo be based
on the conversion of the SD40 locomotive (and its derivative, the SD40-2) since
this tocomotive is the most commonly used in freight service on U.S. railroads.

A general arrangement of the locomotive is shown in Figure A-1 and a sim-
plified schematic is shown in Figure A-2.

PREPARATORY WORK

The following preparatory work is required before the installation of
new equipment.

Ballast

Where possibte, the locomotives selected for this modification will com=-
prise the light underframe mode!l with little or no ballast to be removed;
however, as necessary, for heavy frame locomotives, ballast may need fo be
removed in order To meet axle load limitations. The weight of the fransformer
is estimated at eight tons and fthe convertfer and choke at two fons.

Sandboxes

The sandboxes at each end of the locomotive are to be repositioned on the
quard rail (similar to the DD-40-X locomotive). The associated sand delivery
pipes to each tfruck and pneumatic connections are to be rerouted and extended

as necessary to be compatible with the repositioned sandboxes.

Flectrica! Connection Box

The electrical connection box, mounted inside the short hood, is fTo be
repositioned so that access is available from outside the locomotive. Attention
to adequate sealing against rain, snow, sand, efc, is imperative.

Short Hood

The short hood is fo be removed and extended in length by approximately
12 in. The Top section is to be removable to facilitate ftransformer removal
and replacement.

Alternately, the fransformer Tank may form part of the front hood assembly,
thus reducing the cooling requirement on the oil/air heat exchanger.
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Cab Roof

The cab roof requires strengthening To provide adequate support for the
roof equipment (pantograph, circuit breaker, etc.) and to afford protection
for the crew in the event of a mishap involving damage to the pantograph.
Reposition warning horns below roof line.

MAJOR ELECTRICAL EQUIPMENT

The following equipment will be supplied fo the railroad for installa-
tTion on the locomotive:

a. Roof equipment

b. HT cable

C. Transformer

d. Converter

e. Smoothing choke

fe Modified fraction motors

g. Supp ly changeover switches

h. Traction motor field power supplies

i. 0Oil/air heat exchanger

Je Automatic power confrol equipment
ROOF EQUIPMENT

Install pantograph mounting feet insutators, roof through bushing and
lightning arrester(s). Install pantograph and pneumatic air pipe to panto-
graph air system. install vacuum circuit breaker.

HIGH TENSION (HT} CABLE

tnstalt HT cable from roof fthrough bushing in protective channel through
cab area, under cab floor, and into transformer compartment.

MAIN TRANSFORMER

install ftransformer mounting feet and mount fransformer. Connect HT
cable. Run four secondary cables in conduit or ducting from fransformer to
compressor compartment of locomotive. Cables to be rated at 3000 amps con-
tinuous. Transformer cooling oil pipes to be run to oil/air heat exchanger
located in dynamic brake resistor cooling air stream or in traction motor cool-
ing air duct. Rework front hood assembly as necessary.
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COMPRESSOR COMPARTMENT

Install mountings for thyristor converter and choke and mount the
equipment.

FProvide cable connection between converter output and smoothing choke,
rated at 6000 amp continuous.

Run cables from choke and output of converter to supply changeover switch
located in electrical cabinet.

Run cables to dynamic brake grid compartment from stabilizing resister
thyristors and smoothing choke.

DYNAMIC BRAKE GRID COMPARTMENT

Install transformer oil/air heat exchanger above/below resistor grids
and connect stabilizing resistor cables to existing dynamic brake grids.
An alternative position for the heat exchanger is in the traction motor
cooling air duct.

TRUCKS

Remove traction motors for reworking to separately excited traction
motors. Refit affer modification.

Weld automatic power control (APC) receiver mounting bracket to truck
frame and mount APC receiver. Provide interface control wiring between APC
receiver and pantograph control circuit.

WORK ASSOCIATED WITH SEPARATE EXCITATION OF TRACT!ION MOTORS

Run cables from alternator output ferminals o traction motor field
supply converter,

Install field control units in electrical cabinet and provide control
wire interfaces with fraction motor current monitoring devices (CMD) (to
be installed in each motor leg), existing whee! slip/slide protection,
converter logic, and dynamic brake demand.

CONTROL FUNCTIONS

Install supply changeover switch in electrical cabinet.

Provide cable to transmit throttle position from TH module to converter
in compressor compariment.

Instal ! pantograph contro! equipment.
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Miscellaneous control system modifications are required to reduce engine
speed to 700 rpm under power demand and inhibit dynamic brake when the panto-
graph is raised.

COMPLETED LOCOMOTIVE

Weigh locomotive To establish each wheel load and ballast as necessary.
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APPENDIX B

WAYSIDE ENERGY STORAGE STUDY
DUAL-MODE LOCOMOTIVE COST ESTIMATE

TABLE B-1

MAN-HOUR COSTS

Cost Item

Cost, Man-=hr

Preparatory work

Remove ballast (where necessary)
Reposition sandboxes

Electrical connector box

Short hood

Strengthen cab roof

Reposition warning horns (if necessary)

Roof equipment

Install roof insulators

Instal |l pantograph

Install vacuum circuit breaker
Manufacture and install roof busbars
Connect air supplies and control wires

High-tension cable

Installation and provision of channel

Main transformer

Manufacture and install mountings
Install transformer

Connect cables to transformer
Install cooling oil pipes

Rework front hood

Compressor compartment

Converter and choke mountings
Install converter and choke
Cable runs

80
32
48
64
16

48

16

16
32
48

24
12
16




TABLE B—-1 (Continued)

Cost Item

Cost, Man-hr

Dynamic brake grid compartment

Install heat exchanger 16
Connect cables 4
Connect oil pipes 2
Trucks
Lift locomotive and remove trucks 20
Remove and replace traction motors 24
Automatic Power Control (APC) bracket 4
Mount APC equipment and confrol wiring 6
Retruck locomotive 24
Separately excited traction motors
Cables to power supplies from alternator 24
Install field control! units 48
Instal |l current monitoring device in each motor leg 24
Controt modifications 60
Control functions
Supply changeover switch 8
Cable from TH module to converter 4
Pantograph control!l equipment 24
Miscel laneous contro! modifications 80
Completed locomotive
Inspection and acceptance 150
Weigh locomotive 6
Fix ballast (when necessary) 16
TOTAL LABOR 1076 man-hr
TOTAL LABOR COST $23,672
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TABLE B-2

MATERIAL COSTS

Cost ltem Cost, §

Preparatory work

Reposition sand boxes 100
Electrical connection box 50
Short hood 150
Strengthen cab roof 250
Reposition warning horns 20

Major electrical equipment

Roof equipment

Pantograph 6,000
Vacuum circuit breaker 3,000
Insulators 1,000
Grounding switch 500
Lightning arrestor 300
Main transformer 50,000
High-tension cable 500
Converter 60,000
Smoothing choke 10,000
Traction motor modification 18,000
Traction motor field supplies 5,000
Supply changeover switches 8,000
Oil/air heat exchanger 5,000
Automatic power control! equipment 2,000

Roof equipment
Air piping 100
High-tension cable
Protective trunking 500

Main transformer

Mounting pads 200
Conduit/ducting 500
Cooling pipes 2,000
Front hood 1,000
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TABLE B-2 (Continued)

Cost Item Cost, $

Compressor compartment o

Mounting pads 300
Dynamic brake grid compartment

Oil/air heat exchanger mounting 100
Trucks

APC mounting bracket 100
Complete locomotive

Ballast (if required) 3,000
Cable cost (estimated) 10,000
TOTAL MATERIAL COST $187,820
MODIFICATION COST $211,492
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TRACK DESIGN

APPENDIX C

LOCATION STUDY DATA ON PRIME CANDIDATE GRADES
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OGDEN g

UTAH

HEBRON

LARAMIE
HERMOSA DALE NEBRASKA
SHERMAN
WYOMING BORIE
[}
. CHEYENNE
D O TO OMAHA
—
ety

DENVER

COLORADO

GRADE IDENTIFICATION NUMBER 056

550

UNION PACIFIC RAILROAD

=z ?No.z WYOMING DIVISION MAINLINE

r4
oL &
n =
w 550
205’40
0&530
<0
[+ 477} 20 NO. 1 1
= NO. 2 \ = NO. 1
P = A G
55 MILE / HR.
l _ o
el Ve I . (=
.t ,l?\-, B P=$
E ey g1E] 2
o g e 2u'\ - |8 [
= 82188 £ |8 w
z/] st \ A
CEEE LI LIAN R
g 2323 £ |0 o
w < $ zw k¢ Q 5 b=
s gzl58 C 2 <
< s 8lxo 3 >
© o [ W w
g g 153 z -
) 6 R
70 60 50 40 30 20 10 O

MILE POSTS

TRAFFIC DENSITY

EASTBOUND 77x10% TON/YEAR

WESTBOUND 37x10°% TON/YEAR



GRADE IDENTIFICATION NUMBER 061
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TRACK DESIGN

GRADE IDENTIFICATION
NUMBER 063

1

!

!

!

IDAHO [}
i

i

;

i

POCATELLO S
R \ FossIL

i O GRANGER

I

! vian N~
e S B

i () SALT LAKE CITY

!

I

: COLORADO

I

]

1
!

GRADE IDENTIFICATION

NUMBER 063
®
£ 80 ,
=Ze0 | 'l I L] I UNION PACIFIC RAILROAD
5 80
Q= 401 IDAHO DIVISION — MAINLINE
W 500
» L — - = TRAFFIC DENSITY
7500 IN EACH DIRECTION
k 5 &  22.5x105TON/YEAR
(o]
8 8 =]
0 m
s ':;:’ - 7Av 7000 E
0 ok H w
“ o g ~ ;
L] 21 H o
0 2© 2 <
& 1/ :? §E lc_—>
e/f' "A)':l_ - 6500 «
2t 38 >
85 r
i © w
600
50 55 50 45 a0
MILE POSTS



TRACK DESIGN
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MILE/H
=N WhiH N ON

GRADE IDENTIFICATION NUMBER 088

SALT LAKE CITY
NEVADA

UTAH

MODENA

UVADA
‘. CAUENTE CRESTLINE
' ELGIN

AN
LAS VEGAS

PTZ2I30MT PO

A

ARIZONA

SAN BERNARDINO

GRADE IDENTIFICATION NUMBER 088

500
0
0
0 |
0 UNION PACIFIC RAILROAD
30 | UTAH DIVISION MAINLINE
0
or _ - N TRAFFIC DENSITY
e - i EASTBOUND 10.6x106
Wl TON/YEAR
— 6 WESTBOUND 17.9x10°
ol 2 | n —~ TON/YEAR
oo oI e ® 8
s” g —_ 30 - g"’ ] (@]
L w3 A O S =
D -
3 el i A e o (i % b
s VD . 32 Tz |3 = 23 w
AR < P s o a_ ]
b 3 u.|$ o s - N @ < O=2 2
G 2|2 .2 | 23 | 3 29 o
©-31” 3t75‘34~§~~1~»§~g—ﬁ2‘—~ 4 &
h —_ in
\v Pp 93 | 513 |8 g >
Lrelg|g g3 J G
., © -l ul
HE | o« ] ] 3
430 440 450460 470 480490 500 510 520



TRACK DESIGN SPEED LIMIT
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GRADE IDENTIFICATION NUMBER 090
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GRADE IDENTIFICATION
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APPENDIX D

WESS FLYWHEEL COST ANALYSIS

ASSUMPT TONS

The following are assumed in this WESS fiywheel cost analysis:

Flywheel capacity 7.333 MWhr

Rotor material Lukens Electro Slag Remelt
4340 Steel

Rotor weight 604.4 tons

Rotor diameter 13.5 ft

Rotor length 17.28 ft

Rotor material cost $0.60/1b

Material scrap value $0.15/1b

ROTOR MATERIAL COST

Based on through hardenability of 3 in.,

17.28

No. of rotor plates =
0.25

because the top and bottom plates are forgings. Also allow 0.25 in. for machin-
ing top and bottom plate surfaces; also allow 1 in. on the radius. Then,
Material weight = (13.667)2(12)2(3.5)(0.283) (67) = 1,785,000 Ib

Material cost = (1,785,000)(0.6) = $1,071,000

Actual material required = (13.5)2(12)2(3)(.283)(67)n/4 = 1,172,472 Ib

Scrap value = (0.15)(612,528) = $91,872

Total material! cost = $979,121

TOP AND BOTTOM FORGING MATERIAL COST

2.12
Useful weight = (604.4)(2000) = 37,075 Ib
69.12




But, assume that twice useful material is required for forging:
Material weight = 74,151 Ib

Scrap weight = 37,075 Ib

Material cost = (74,151)(0.65 - (37,075)(0.15) = $38,929

ROTOR PLATE PREPARATION COST

Labor hours for rotor plate preparation are as follows:

Process Labor Hr/Plate
Flame cut to 13.67 ft diameter 4
Mill both sides to reach 3.1 in. thickness 8
Blanchard grind both sides 0.050 in. 16
Bore twenty-four 6-in. holes 12
Finish machine diameter to 13.5 ft 16
Heat treat 8
Inspection 6
Total 70 hr

Assume labor cost at $22/hr. Then,
Plate preparation cost = (67)(70)(22) = $103,180
TOP AND BOTTOM FORGING PREPARATION COST

Labor hours for top and bottom forging preparation are as follows:

Process Labor Hr/Plate
Heating and handling 24
Rough forging 80
Final forging 40
Bore twenty-four 6-in. holes 24
Final machining 160
Heat treat 12
Inspection 24
Total 374 hr

Total forging preparation cost = (2)(374)(22) = $16,456
THROUGH-BOLT COST
Assume machining from 6.5~in. rod.

Material weight = (24)(20)(12)6.5)2(.283)1/4 = 54,091 Ib.
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Material cost (4340 steel) =

Cost to fabricate:
Process
Turn to diameter
Cut threads (both ends)

Heat treat
Inspection

Total fabrication cost =

Through-bolt cost totals:

(54,091)(0.6) =

$32,455

Labor Hr/Bolt

16
16
4
4

Total 40 hr

(24) (40) (22) = $21,120

Material $32,455
Fabrication 21,120
Nuts (48) 7,200

Total Cost $60,775

HOUS ING MATERIAL COST

Housing material cost analysis is based on a 2-in.-thick conformal housing
with reinforced top and bottom fabricated from 1020 grade steel (cost $0.20/1b).
Housing height is 20 feet with an inside diameter of 13.7 ft.

Weight of cylinder =

(14,0332 - 13.72)(12)2(20)(12)(.283) 7 = 71,012 |b

Weight of top and bottom = (2)(14.033)2(12)2(2)(.283) = 32,100 Ib

Total material cost = (0.2)(103.112) = $20,622

HOUS ING FABRICATION COST

Labor hours for housing fabrication are as follows:

Process

Rol ! cylinder

Weld cylinder

Machine cylinder ends
Flame cut top and bottom
Reinforce top and bottom
Machine top and bottom
Inspection

Housing fabrication cost = (720)(22)

Labor Hr

160
80
80
16
80

240
64

Total 720 hr

= $15,840
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TOP AND BOTTOM BEARING AND SEAL ASSEMBLY COST

Labor hours for top and bottom bearing and seal assembly are as follows:

Process Labor Hr
Machine top assembly 960
Machine bottom assembly 1200
Inspection 216
Total 2376 hr

Total fabrication cost = (2376)(22) = $52,272
Material including seals and bearings = $10,000
Total bearing and seal assembly cost = $62,272
ANCHLLARITES AND ASSEMRLY MATERTAL COST

The cost for ancillaries and assembly material is:

2 High-pressure lube pumps $ 4000
2 Low-pressure lube pumps 1000
2 VYacuum pumps 3000
2 Heat exchanger systems 2000
2  Sumps 800
1 Air compressor 500
1 Air reservoir and controls 1500
6 Hydraulic jacks 6000
1 Set misc. assembly material 20000

Total Anciltlary Cost $38,000

FLYWHEEL SHIPMENT COST

Assuming a rail shipment of 2500 miles, the quotation for flywheel shipment
from ATSF and Conrail is $49,776.
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FLYWHEEL ASSEMBLY AND TEST COST

Labor hours for flywhee! assembly and test are as follows:

Process Labor Hr
Install bottom housing and bearing 480
Stack flywheel discs 690
Assemble housing and top support 720
Install ancillaries 640
install flywheel machine 480
TesT rotating system 240
Disassemble and balance rotor 480
Reassemble 240
Conduct system tests _ 960

Total 4930 hr

Flywhee! assembly and test cost = (4930)(22) = $108,460
COST SUMMARY

The preceding costs can be summarized as fo!lows:

Element Cost
Rotor material $1,071,000
Top and bottom forging material 38,929
Rotor plate preparation 103, 180
Top and bottom forging preparation 16,456
Through-bolt 60,775
Housing material 20,622
Housing fabrication 15,840
Top and boftom bearing and seal
assemblies 62,272
Ancillaries and assembly material 38, 800
Flywheel shipment 49,776
Flywhee!l assembly and test 108,460
Tota! Cost $1,586,110

Then,
Cost/Kwhr = $216.29
Assume general and administrative cost plus profit of 25 percent.

Final Cost/Kwhr of flywheel = $270
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APPENDIX E
WESS ECONOMICS PROGRAM LISTING
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APPENDIX F

TRAIN PERFORMANCE CALCULATOR

INTRODUCT ION AND SUMMARY

This appendix summarizes features of the AiResearch frain performance
calculator (TPC) program. A detailed definition of route data and schedule
data requirements is included, together with a program listing and program
nomenclature. This program was developed to support train performance cal-
culations (TPC's) required by the WESS study performed for FRA. A summary
of program features is shown in Table F-1.

TABLE F-1
TPC FEATURES
Program Feature Description
Principal emphasis Power demand and energy required
from the wayside for multitrain
operation of long-haul freight
trains
Remote run on line No
Batch rum © Yes
fnput media Disc file or cards
Output medium Line printer
Computer size required Med ium
Computer now in disc Univac 1100
Language ANS1 Fortran
Modifications required for None
interchange
Data
Access mode Sequential
Form Point
Organized Separate route of schedule data
Ease of use Good
Economy Good
User's manual None available




TPC Genera! Description

The TPC developed by AiResearch for the analysis of WESS is a computer
program that simulates the operation of many trains over a raiiroad route. The
TPC contains characteristics of the locomotives and rolling stock as internal
program parameters; route and schedule data are input to the program. The
program computes speed, time, distance, acceleration, locomotive input power,
efficiency, power factor, apparent power, and energy input from the pantograph.
[T also computes fractive effort during motoring and braking from both the pro-
pulsion system and the friction braking system. To define substation power
versus time and energy requirements, it analyzes specific energy consumption in
watt—hours per ton-mile for each ftrain and accumulates the power and energy
requirements for all trains operating over specific sections of the route.
Simulation of up to 100 trains over a 24-hr period of operation can be performed.
Outputs include the time history of a selected frain over the route and a {ist-
ing of 5-min power demands for each subdivision of the route (up to 10 subdivi-
sions). It also outputs the total route 5-min power demand for an entire 24-hr
period. Tota! energy requirements for each division and the tota! route also
are output for the 24-hr period.

The basic route data inputs required in a route file for each route are
listed below. Detailed information on route data requirements and input format
is provided later in this appendix under the paragraph, "Track Data Requirements'.

® Curvature, deg

® Grade, percent

e Civil speed limit, mph
'Q Elevation, Tt

The basic schedule information required in a schedule file for each train
is listed below. Detailed information on schedule data requirements and input
format is provided later under "Train Schedule Requirements'.

® Train identification
o Direction of travel
® Trailing tons

® Start time

® Location of intermediate stop
° Intermediate stop dwell

® Start location

® Number of locomotives {(minimum)

F-2



Complete listings of the program and program nomenclature are presented
at the end of this appendix.

The program is based on the calculation of frain resistance from the modi-
fied Davis formulas and the use of representative propulsion system efficiency
and power factor characteristics based on E60C locomotive data, as shown in the
algorithms of Figures F-1 and F-2, respectively. |In these algorithms, efficiency
and power factors are assumed to be a function of speed only. Speed is defined
as V, efficiency as £TA, and power factor as PF.

The tractive effort and propulsion power calculation logic for blended fric-
tion and regenerative braking, coast, or motoring is shown in Figure F-3.

The program simulates operation of the train in accordance with speed limits
by means of an algorithm that represents a dead-band type of speed control with
rate of change of acceleration or deceleration and anticipation of stopping dis-
tances. This logic is shown in Figure F-4.

TPC USES
The TPC is useful in performing any of the following tasks:

(a) Determining the power and energy demand that results from operation
of multiple trains over a route in accordance with a definite schedule
and frailing ton distribution between trains.

(b) Determining the effect of motive power on the performance of a frain
over a route.

(c) Evaluating the effect of track relocation, grade changes, curve changes,
speed restrictions, and other route changes on performance, schedule,
motive power requirements, and energy consumption.

(d) Evaluating the effect of schedule changes, frain size, and motive
power assignment on power demand and energy requirements.

The TPC provides a valuable, simple, and time-saving method for simulating
train performance as well as changes in route characteristics or schedule factors.

TPC AVAILABILITY

The AiResearch TPC is available immediately. !+ includes a complete program
listing, program nomenclature, track data requirements, and schedule data require-
ments; these are enclosed at the end of this appendix. This program contains no
proprietary information. |t is available to any interested user.

GENERAL~PURPOSE TPC
The AiResearch TPC is designed primarily as a tool for analyzing of long-

haul freight service, with emphasis on energy and power demand requirements of mul-
tiftrain operations. |t also can be employed for intercity raif passenger service.

F-3



s BASED ON E60C

l

ETA = 0.104 V
IF
V> s ETA = 0,9649 V/(V + 4.278)
IF
V> 13 ETA = 0.9592 V/(V + 6.378)
I\F
V> 32 ETA = 0.9364 V/(V + 8.5207)

Figure F-1. TPC, Propulsion System Efficiency Algorithm*

l

PF = 0.3 + 0.049 V

« BASED ON E60C

n

PF = 1.307 V/(V + 6.933)

PF = 1.123 V/(V + 9.595)

i

PF = 1.0925 V/V = 14.489)

Figure F=2. TPC, Propulsion System Power Factor Algorithm¥
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The TPC is not suited to the analysis of multistop rail rapid ftransit operations.
Although it includes only electric locomotive motive power, it could be modified
for other propulsion types.

MACHINE CONS{DERATIONS

Batch-Processing and Time-Sharing

The AiResearch TPC is well-suited to running under batch control because
no user interaction is required during program execution. Basic locomotive
and trailing car characteristics are inclfuded in the program. Route and schedule
data inputs are developed prior fto the run.

Input/Output

The program is designed as a self-contained main program that receives
input from the route and schedule files. These files may be input from a
card reader or tape fifes. It is designed to output data on a line printer.
Machine Size

The TPC is used on a medium~size engineering computer, a Univac 1100, in
a time-sharing mode with other batch jobs. It requires no excessive storage or
time to calculate typical runs.

Cost of Use

The TPC is a simple program that analyzes complete routes such as Harrisburg
to Pittsburgh or Los Angeles to Salt Lake City at moderate costs per run.

Programming Language

The TPC is written in ANS| Fortran and should therefore be compatible with
most computer installations.

Interchangeability

Selection of ANSI FORTRAN ensures that the program is almost completely
interchangeable with any computer system without any major problem.

User Considerations

The TPC is easy to use on any computer installation. |t reguires only sim-
ple program changes to accommodate changes in motive power and the development
of route and schedule data. Track data and schedule data requirements are defined
in the ensuing paragraphs of this appendix. Track data are read in a sequential
mode as present in the route data file. The entire route data file is read at
one time and is processed prior to execution of a run. Schedule data are proces-
sed in a similar manner. Route data are entered in point form, e.g., by mile-
post location. Curvature, speed limit, and grade data are entered at the point
to define the characteristics over the intferval to the next point of change.
Grade data may be alternately entered as elevation data in point form.
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All route data are combined on one record in a common file. Schedule data
are maintained in a separate file. No problem has been experienced in the

use of this approach.
TRACK DATA REQUIREMENTS

Figure F-5 shows the format of a route data input card. The route data
card contains the milepost location, degree of curvature, grade, civil speed,
and elevation data that define the route profile. Location inputs may be
increasing, decreasing, or mixed. Whenever a change occurs in the milepost
reference, the equivalent location in terms of the new reference must be speci-
fied on the route data input card that identifies the location of the change
in milepost reference. The equivalent location is specified in field 7 of the
route card. The following card may then utilize the new reference for milepost
locations. Up to 1000 route data input cards may be included in the route data
file. A route data input card is required only for each location where changes
in route data occur.

Grade data may be input directly as the grade to the next grade change
location where the grade is expressed as a percent of grade. An alternate method
of inputting grade data is fto input elevation data at each grade change loca-
tion with the elevation data expressed in feet. In the absence of elevation
input data, the program defaults to the input grade data. |If elevation data and
grade data are both omitted, the program defaults to zero grade.

The route data are input to the program and are stored in a route matrix
RT(1000,9). The relationship between the route matrix elements RT(!,J) and the
route data input cards is as follows:

Mi [epost Location=-the milepost location in card field 1, card columns
(cc) 1-10, is the identification of the tocation for a change in any one
or more input route parameters. |t is expressed in miles with an F10.3
format. |t may start at any number within this format and be monotone,
increasing or decreasing in the "forward" direction of travel. The ref-
erence milestone may change. Whenever the reference milestone changes,
the equivalent milestone based on the new reference must be defined in
field (7) at the last data point by using the ofd reference. For the
next data point, mileposts based on the new reference should be used.
The milepost location is stored in RT(l, 1)

Curvature--The curvature of a section that starts at the milepost defined
by field (1) is shown in field (2}, cc 11-20, in degrees deflection per
100 feet of chord (the customary railroad engineering unit) using an F10.3
format. The curvature is stored in RT (1, 2).

Grade--The grade for a section of the route that starts at the milepost
defined by field (1) is shown in field (3), cc 21-30, with the grade
expressed in percent using an F10.3 format. The grade is stored in

RT (1, 3).
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Civil Speed Limit--The civil speed i{imit for a section that starts at the
milepost defined by field (1) is shown in field (4), cc 31-40; the speed
limit is expressed in miles per hour using an F10.3 format. The civil
speed is stored in RT (I, 4).

Elevation--The elevation at the location milepost defined by field (1) is.
shown in field (5), cc 41-50. Elevation is expressed in feet above a ref=-
erence elevation by using F10.3 format. The elevation data are stored in
RT {l, 5). The same common reference elevation must be used for atl inputs.
Elevation data may be positive or negative.

Unused Field--Field (6) is not used for input. This field {(cc 51-60)
should remain blank.

Milepost Reference Change--I|f the miliestone reference is to change, the

milepost location defined in field (1) must be expressed as an equivalent

milepost, based on the new reference in field (7)., The milepost locations

are expressed in miles using an F10.3 format. The new equivalent milepost
- location is stored in the route matrix as RT (I, 7).

Unused Field--Field (8) is not used for input. This field (cc 71-70)
should remain blank.

Stored Route Data

Stored route data must be contained in a deck or file with the individual
milepost cards in the "Forward" route direction sequence. A negative number
(-.001) is required in card columns 31-40, field (4), of the last milepost-
card to stop the ftrain at the end of the route.

The end of the file is identified by a card immediately following the last
mifepost card. This end of file card must contain 9999. in card columns 1-10,
field (1), of the route deck.

1 Reverse Direction

Route data are required only for the forward direction of a route. Train
operation may be simulated for forward or reverse route directions by input of
the appropriate code in the train scheduie data. The program automatically com-
putes the proper reverse route matrix from the forward route input data.

2, Data Entry

The route data must be entered only when a change occurs in any one or more
parameters. |f no change is required in a given parameter, the field must be
left blank or the parameter may be repeated. To distinguish a zero parameter as
a new or different value, a zerc must be entered as .00!. [f a true zero is
entered, the program will assume no change from the previous value of the param-
eter at the last milepost data card having a non-zero value.
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Train Schedule Requirements

Figure F-6 shows the format of a train schedule data input card. One card
is required for each frain. A train may travel between ftwo points with one
intermediate stop. 1t may start at any time during the day and may start at
any location. Any dwell up to 24 hr may be specified for the intermediate
stop. If a train is required to stop at more than one intermediate point along
the route, a separate schedule card is required To start the *train at the
first intermediate stop at a specified time, continue to the second interme-
diate stop, dwell, and then proceed to the end of the route. The second sec~
tion of the route requires reidentification of the train. The dwell at the
first intermediate stop must be greater than 24 hr to prevent continuation
of that train.

The schedule data input card contains the train identification, direction
of travel code, trailing tons, start time, intermediate stop location, and
number of locomotives. In the absence of any start location input, the train
will start at the appropriate fterminal, as determined by the input direction
of travel code. The program is capable of reading 100 schedule cards. The
last schedule card must be followed by a card having a negative one in card
columns 9-10 to indicate the end of the schedule deck.

The train identification (up to eight alphanumeric digits) is stored as
a frain identification vector 1D (l). The remaining schedule input data are
stored as a schedule matrix SCH (I, J). The same train index (1) is common
to both elements to identify the train schedule parameters for a given train.

The schedule input card is divided into 15 fields, as shown in Figure
F-6. Each field is as defined below:

Train ldentification-~Any alphanumeric identification containing up
To & characters may be used for Train identification. The train
identification is contained in field (1), cc 1-8 of the schedule card
in A8 format. The program stores train identification data as 1D (N).

Direction of Travel Code~-The direction of fravel is selected by a
code. |f the direction of ftravel is in the "forward" direction of

the route (direction of the route deck sequence) the code is "0,

If a "reverse" direction is desired, the directicon code "1" is entered
in field (2), cc 9-11 of the schedule card in F3.0 format. The
program defaults to the "forward" direction if no entry is made in
field (2). The program stores direction of fravel in the first

column of the schedule matrix SCH (1,1).

Trailing Tons--The number of trailing tons is entered in field 3,
cc 12-30, in F19.6 format. The program defaults to the number of
locomotives only when this field is blank. The program stores the
trailing tons in the second column of the schedule matrix.

Start Time~-The schedule departure time for the train is entered in
fietds (4), cc 31-32, and (6) cc 34-35. Field (4) contains the
hours and field (6) contains the minutes. Field (5), cc 33, provides
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space for a colon to facilitate card reading, and is ignored by the
program. The program stores the start time hours in the third
column of the Schedule Matrix SCH (N, 3) and the minutes in the
fourth cofumn SCH (N, 4). The format of the data is F2.0. In the
absence of start time input the program defaults to departure at
0000 hours.

Unused Field~-Field (7) is unused.

Intermediate Stop Milepost-~Field 8, cc 41-50, defines the location
of the intermediate stop, if any. This location must be expressed
in terms of the common reference milepost location, as shown in
column 8 of the route matrix listing. |f this field is not punched,
no infermediate stop is made., The format of this field is F10.6.
The location is stored in column five of the schedule matrix SCH
(N,5).

Intermediate Stop Dwel!l--The dwefl for an intermediate stop is
entered in field (9), cc 51-52, and field (11), cc 54-55. Field (9)
contains the dwell hours and field (11) contains the dwell minutes.
Field (1), cc 53, provides space for a colon to facilitate card
reading, and is ignored by the program. The program stores the
dwell time hours in the sixth column of the schedul!e matrix (SCH
(N,6); minutes are stored in the seventh column SCH (N,7). The
format of the data is F2.0. In the absence of dwell time data

input the program defaults to zero dweli. Dwell is ignored if the
intermediate stop data is zero.

Unused Field--Field (12) is unused.

Start Location-~Start locations, other than those at the terminals,
must be specified by entry of the start location milepost. This is
done by using a common reference milepost, as shown in column 8 of
the route matrix output tisting. The milepost location is entered
into field (13), cc 61-70, in F10.6 format. The program stores the
start location in column 8 of the schedule matrix SCH (N,8). In
the absence of input in field (13), the program starts at the ter-
minals, as determined by the direction code input in field (2).

Minimum Number of Locomotives--The program selects the number of
locomotives needed for operation over The maximum grades for the
specified trailing tons and performance. |f a number of locomotives
are specified in field (14), cc 71, the number of locomotives will
be no less than that specified in this field. The format of this
field is F1.0. The program stores the minimum number of locomotives
required in the ninth column of the schedule matrix.

Unused Field--Field (15) is unused.

Data Entry

Schedule data must be entered in start time sequence.
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TRAIN PERFORMANCE COMPUTER TPC PROGRAM LISTING

The following printout defines the TPC program.
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TRAIN PERFORMANCE COMPUTER PROGRAM NOMENCLATURE

The following prinfout defines the program nomenclature.
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NOMENCLATUKE

FORMTIKAN SYMBOL GENCEIPTION

nEAH AVERAGE ACUFLERATICN

ACC ACCEILERAT [N

ACCH CLDY ACCELERATION

AFC FRONTAL ARE & OF CAaR

AFL FRONTAL AREA OF LOCOMOTIVE

AJERK JFHK HATF

AJERKH HATED JERK QATE

AMASS EFFECTIVE TRAIN MASS

BEMAX  mMaXkm ANAKING EFFORT PER |LGCO

CLOCK  DaELl TImER

CONSTY LOCATION (f TRAIN AT STARY

DECL DECELERATION

DECHAX mAXIMUbL DECELFRATION LIMIT

Dt ABSOLUTE DISTANCE TO NEAT RQUTE MaY#lX LOCATION
DIF1] ABSCLUTE DISTANMCE FROM LAST HOUTE MATRIX LOCATION
Dwekli  DwWELL TIME AT INTERMEDIATE STOP (TIMNWUT AS HRIMIN)
bt ELECTRICAL HRAKING EFFORTY

ER REGENERATED ENERGY AT PANTOGRAPH

ETA PROPULSTON SYSTEM EFFICIENCY

Ev NET VERICLE ENERGY CONSUMPTIUN

EVvi ENERGY INPUT TO VEHICLE=OLD

F& MECHANICAL (FRICTION) HRAKING EFFORT

Fib MECHANTCAL (FRICTIUM) BROKING EFFORT

G GRADE

GFE ACCELERATION DUE TG GRAVITY (2)a927)

1 IrDE X

1 FTRAIN TNDEX

IFL AL CONTROL FOR COMPUTATION GF FLYAHEED CAPACITY
11 INDEX

I~ NUMBER OF HOUTE DATA CARDS

ThEGr  KEGENFRATION CODE  1sREGH DsNON=REGNH

THE T [HGEX FOR INTERMEDTATE STOR 1t ROUTE MATRIKX
1ROUTE ROUTE CODF nawESTHOUND 1sEASTHOUND

165K SPEED RENDUCTION CODE

IstToe STOPPING CODE

IwC WRITE CUmAND

Ixx TIME HISTORY OuTPUT COUE 1s0UTRPUT osnOMNeQUTPUT
N] TMNLIE X

K INGF &

KVA VERTICLE INPUT APPAKENT POwWER

MF LOCOMQTIVE MaASS FACTOR

N TRATHN SCHEDULE INGEX

NAC NureER OF AXLES OGN Caks

NAL BUMHER OF AXLES ON 1LOCOMOYIVES

NG NEIF FRER OF CARS TH TRATN

NTD MUMBER OF TrRalT&S 10 SCHEDULE

NL NUMBER UF LOCOFGTIVES IN THAIN

NI MuspEr OF CawRDS 1M RQUTE DATR

NG U RER OF FEEG POINTS

NSEL TRAIN SELECTED FOR OUTPUT (1D NUMBER)
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UNTITS
MFH/SEC
MPH/SEC
MPH/SEC
SG FT
S$a F1
MPH/S/S
MPH/S/S
G LRS
L.8S
SEC
M1
MpPH/SEC
HMPH/SEC
Ml
MI
SEC
LES
KWHKR
PU
KwHRS
KWHR
LBS
KILO=LRS
%
MPRH/SEC




PAUX COCOMOTIVE s [ Pafy (i w o

PHAR AVERBWGE PQwE K

42 PREOPUILIION SYSTE L 0wt e o Al TUR P

B PROPULS TN HOwh K

FQ PROFPULSION REQL Y IYE #0006k W KV i

R RADIUS QF Cupbeva T DEOGREES
REMP HEGEWERATIVE FREEGY AT npdbasG Polot .
HF FEACTIVE FACTOK P

RMAA MARTMUM REGEMFRATEL POwr b
=T FOUTE PATRIX 1=l UCATION g 2mULIRVE 3 3=GRADE s 4=~SPEFD s R=El EVATION

sheGRADE SPEEN s 7=LQCATION(MNEw HKEFERFNCE ) o A=l OCATION(START
REFEREMOE ) g3t I IMUM NUMBER OF LOCOMOTIVES
RTF  FORwARG ROLTE RATRIX
RIR  HEVERSE ROUTE “4aTRTX
RT1  REYERSE HOUTE MATHIA(TLTeamENnTATE)

S DISTANCE FROM StTawd MILES
SCH  SCHEDULE MATRIX

Sk SPECIFIC ErERGY RWH /18]
SPACE ©ISTAMCE HETWEEN FEED MOINTS b4 ]
ST SEEFO TRANSTITION LOCsT 160t MYLES
STa TRAIN LOCATION MILES
STAT LOCATION AT START O SHEEED REDUCTION MILES
5T7 STCPPING LOCATION : MILES
TAU COrPPUTING 1MTERVAL SEC
TAU] RORIMAL COMPUTT NG [RTE Yag SE¢C

TH HRAKING EFFOMT LAS
THEAR AVERMNGE BRARKING EFFORT LRS

T8N ERAKIMNG EFFORT AT NEXT LOWER SPEED LIMIT (TOTAL) LaS

TC CURVE RESISTANCE LES

TG TRAIn DRAG L.RS

TN TRaiH NRAG AT NEXT LowkR SPEED | IMIY LBES
TOYN FHOPULSTOM ACAKING EFFURT LBs
TOYNNM FROFPULSTION BRAXING EFFUORT AT NEXT LOWER SPFED LES
TEMAX MAXRTIMUL TRACTIVE EFFQGRT (Y
TEST  LUCATION OF INTERMEDIATE STOP (START HASE)

TG GRADE UKAG L
TrETa TIME AFTER START SEQ,

FHP TRAET IO pORSFPO=ER AT wmFELS [2Ye]

TiM aHTedT CLOCKE T iMF SEC
TIMX 1 TonbATION JHNTERVAL Fof waySTOE EMERGY SEQ
TIMX WNORMAL OQUTRPUT INTERYAL SE O

TN MET ACCELERATING THACTIVE EFFORTY LES

ing SJERR LISLTOD TEACTIVE FFORT TRCRESENT (1S
YOMNC CAR WELGHT T
TRl LOCOHOTIVE s TGHT T(eas
YONE Y TON BILES (72748 Lulte(ars) Toriets]
e TRACTIveE eFPORT HEGWLTRED LFS

TR FRHACTEIVE REF R [ UEFTIRPEN
Vet ThaACTIVE FFFOwT svaf asbi Lib

TRC CAIR~i}RAG Lo
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TRCN CAR DRAG AT ~NEXT LOWER SPFED LIMIT LBS

TRL LOCOMOTIVE NHAG LBS
TRLN LOCOMOTIVE DRAG AT NEXT LOWER SPEED L IMIT LAS

11 TRATLING TONS TONS
TXX QUTPUT INTERVAL

v TRAIN SPEFD P
VBAR AVERAGE SPEFD MPH
ve SPEFD LIMIT MPH
VCN SFEED LIMIT = NFXT LOWER MP M
VMV A APPARENMT POwFR JWPUT TO TRAIN MV A
VM REAL POWER TnPUT TO TRALN M

VMW]  MAXIMUM WEGENERATEN POWFR FROM VEHICLE DURING LAST
REGENERATIVE PERIOQD

VP VFEHICLE REAL POWER InPOLT K

VP1 QLL VEHICLE REAL POWER I1hPUT Kw

VX8 TRANSTTION SPEFD=ERAKING M
VXT TRANSTITION SPEFD=MOTORING MPH
vl QLD SPEED MPH

WT TRAIN WEIGHT L8as

WTC CAR WEIGHT LAHS

wTL LOCOMOTIVE WEIGHT LBS

XY SPEED REDUCTION DISTANCE M]
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APPENDIX G

REPORT OF NEW TECHNOLOGY

No "subject inventions" resulted from the Wayside Energy Storage Study.
However, an improvement over present equipment was developed in concept which
could have a significant impact on U. S. railroad operations, This is the
duai-mode locomotive which is described on pp 20-25 of Volume 1 and pp 2-39
through 2-53 of Volume 2 of this report. This locomotive is a modification
of a standard dieseli-electric locomotive to which a pantograph, transformer,
converter, and smoothing inductor are added., The resulfing dual-mode locomo-
tive can then operate either as a conventional diesel-electric locomotive or
as an electric locomotive powered from an overhead catenary. Such locomotives
can then provide the benefits of both diesel-electric and electric locomotives
without the drawbacks of either., For example, the dual-mode locomotive can
operate on electrified lines with the energy efficiency, long life, and reduced
maintenance of an electric locomotive but when required, can operate with full
performance on non-electrified |ines as a diesel-electric locomotive. The
application of dual-mode locomotives to railroad routes with local electrifica-
tTion on ruling grades can result in annual returns on investment up to 27%
based on reductions in required locomotive consist, energy savings, and reduced
maintenance,

485 copies
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